Files
pytorch-study/14.ipynb

1547 lines
247 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2025-06-20T03:33:03.654554Z",
"start_time": "2025-06-20T03:33:03.001782Z"
}
},
"source": [
"import numpy as np\n",
"import random\n",
"import matplotlib.pyplot as plt\n",
"from torch.utils.data import DataLoader"
],
"outputs": [],
"execution_count": 1
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T03:35:36.324589Z",
"start_time": "2025-06-20T03:35:36.216066Z"
}
},
"cell_type": "code",
"source": [
"w = 2\n",
"b = 3\n",
"xlim = [-10, 10]\n",
"x_train = np.random.randint(low=xlim[0], high=xlim[1], size=30)\n",
"\n",
"y_train = [w * x + b + random.randint(0, 2) for x in x_train]\n",
"\n",
"plt.plot(x_train, y_train, 'bo')"
],
"id": "7785af2c4ea0a2a6",
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7b28d4b99330>]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAALTtJREFUeJzt3X10VPWdx/HPZCCBlDyIhDyQyEMQqGJZZJUGGwtbDmixC424iq6Cy9oWUIkgD9nTFWGLQXARtyW63VVwt7V05YxaW2uLCEhLQIvkrFLgACeaBxKguGR4kASG3/5xTwaGTB6GzMy9M3m/zpkT53d/d+4vN3OYj7/7u99xGWOMAAAAHCzB7gEAAAC0h8ACAAAcj8ACAAAcj8ACAAAcj8ACAAAcj8ACAAAcj8ACAAAcj8ACAAAcr5vdA+isixcv6siRI0pJSZHL5bJ7OAAAoAOMMTp16pRycnKUkND+/EnMB5YjR44oLy/P7mEAAICrUF1drdzc3Hb7xXxgSUlJkWT9wqmpqTaPBgAAdITX61VeXp7/c7w9EQ0spaWl8ng82r9/v3r27KkxY8bo2Wef1dChQ/19zp07p/nz52vDhg1qbGzUxIkTVVZWpszMzA4do/kyUGpqKoEFAIAY09HlHBFddLtt2zbNmTNHO3fu1KZNm3T+/HlNmDBBZ86c8fd54okn9Pbbb+v111/Xtm3bdOTIERUVFUVyWAAAIMa4ovltzcePH1ffvn21bds23X777WpoaFBGRoZee+01TZ06VZK0f/9+ffWrX1V5ebm+/vWvt/uaXq9XaWlpamhoYIYFAIAYEernd1Rva25oaJAk9e7dW5K0e/dunT9/XuPHj/f3GTZsmK677jqVl5dHc2gAAMDBorbo9uLFiyouLtZtt92m4cOHS5Lq6+uVmJio9PT0gL6ZmZmqr68P+jqNjY1qbGz0P/d6vREbMwAAcIaozbDMmTNHn376qTZs2NCp1yktLVVaWpr/wS3NAADEv6gElkcffVS//vWvtWXLloB7rbOystTU1KSTJ08G9D969KiysrKCvlZJSYkaGhr8j+rq6kgOHQAAOEBEA4sxRo8++qjeeOMNvf/++xo4cGDA9lGjRql79+7avHmzv+3AgQOqqqpSQUFB0NdMSkry38LMrcwAAHQNEV3DMmfOHL322mt66623lJKS4l+XkpaWpp49eyotLU0zZ87UvHnz1Lt3b6Wmpuqxxx5TQUFBh+4QAgAAXUNEb2turRjMunXrNGPGDEmXCsf94he/CCgc19oloStxWzMAAOHX1CSVlUmHD0v5+dLs2VJiYvheP9TP76jWYYkEAgsAAOG1cKG0erXk811qc7ulefOklSvDc4xQP79j/ruEAABA+CxcKK1a1bLd57vUHq7QEgpmWAAAgCTrMlBycuDMypXcbuns2c5fHnJ0pVsAAOBcZWVthxXJ2l5WFp3xXI7AAgAAJFkLbMPZL5wILAAAQJJ1N1A4+4UTa1gAAIAk1rAAAIAYkJho3brclnnzwluPpaO4rRkAAPg137Ic6TosoeKSEAAAaMFplW6ZYQEAAC0kJkrFxXaP4hLWsAAAAMcjsAAAAMcjsAAAAMcjsAAAAMcjsAAAAMcjsAAAAMcjsAAAAMcjsAAAAMejcBwAADHE55O2b5fq6qTsbKmw0CqbH6vH6SgCCwAAMcLjkebOlWpqLrXl5kovvCAVFcXecULBJSEAAGKAxyNNnRoYIiSpttZq93hi6zih4ssPAQBwOJ9PGjCgZYho5nJZMyCVlZ27bBOt40ihf34zwwIAgMNt3956iJAkY6TqaqtfLBznahBYAABwuLq68Paz+zhXg8ACAIDDZWeHt5/dx7kaBBYAAByusNBaO+JyBd/uckl5eVa/WDjO1SCwAADgcG63dUux1DJMND9fs6bzC2GjdZyrQWABACAGFBVJGzdK/foFtufmWu3hqo8SreOEituaAQCIIV9+KS1YIB08KF1/vbRqldSzZ/iPE+lKt6F+fhNYAACIEQsXSqtXW2GimdstzZsnrVxp37iuRqif35TmBwAgBixcaM2mXMnnu9Qea6ElFMywAADgcE1NUnJy4MzKldxu6exZKTExeuPqDCrdAgAQZ8rK2g4rkrW9rCw647EDgQUAAIc7fDi8/WIRgQUAAIfLzw9vv1jEGhYAAByONSzMsAAA4HiJidaty22ZNy92wsrV4LZmAABiQPMty/FShyVUXBICACCGnD4tPfigtcA2P1/67/+WevWye1Shc9QloQ8++EDf+c53lJOTI5fLpTfffDNg+4wZM+RyuQIed9xxRySHBABAzFq4UEpPl958U/rkE+tnerrVHu8iGljOnDmjESNGaO3ata32ueOOO1RXV+d//OIXv4jkkAAAiEnNlW6vXHjbXOk23kNLRNew3Hnnnbrzzjvb7JOUlKSsrKxIDgMAgJjW1GStXWnL6tXSj34Uvwtvbb9LaOvWrerbt6+GDh2qWbNm6cSJE232b2xslNfrDXgAABDPqHRrc2C544479F//9V/avHmznn32WW3btk133nmnfG38VUpLS5WWluZ/5OXlRXHEAABEH5Vubb6t+b777vP/90033aSvfe1rys/P19atW/Wtb30r6D4lJSWad9nN6F6vl9ACAIhrVLp1wCWhyw0aNEh9+vTRoUOHWu2TlJSk1NTUgAcAAPFs9myr3kpb3G6rX7xyVGCpqanRiRMnlJ2dbfdQAABwDCrdRviS0OnTpwNmSyorK1VRUaHevXurd+/eWrp0qe6++25lZWXp8OHDWrhwoQYPHqyJEydGclgAAMQcKt1GsNLt1q1bNW7cuBbt06dP14svvqgpU6Zoz549OnnypHJycjRhwgT9y7/8izIzMzt8DCrdAgC6kqYm626g5kq3s2fH5sxKqJ/flOYHAABR56jS/AAAAOFAYAEAAI5HYAEAAI5HYAEAAI5HYAEAAI5HYAEAAI5HYAEAAI5HYAEAAI5n67c1AwAQD+Kl+qyTEVgAAOiEhQtbfr/Pk092je/3iSYCCwAAV2nhQmnVqpbtPt+ldkJLePBdQgAAXIWmJik5OXBm5Uput3T2LJeHguG7hAAAiIKysrbDimRtLyuLznjiHYEFAICrcPhwePuhbQQWAACuQn5+ePuhbaxhAQDgKrCGpXNYwwIAQBQkJlq3Lrdl3jzCSrhwWzMAAFep+ZblK+uwuN3UYQk3LgkBANBJVLoNXaif38ywAADQSYmJUnGx3aOIb6xhAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjkdgAQAAjtfN7gEAALoWn0/avl2qq5Oys6XCQsnttntUcLqIzrB88MEH+s53vqOcnBy5XC69+eabAduNMXrqqaeUnZ2tnj17avz48Tp48GAkhwQAsJHHIw0YII0bJ91/v/VzwACrHWhLRAPLmTNnNGLECK1duzbo9pUrV+rf/u3f9NJLL2nXrl36yle+ookTJ+rcuXORHBYAwAYejzR1qlRTE9heW2u1E1rQFpcxxkTlQC6X3njjDU2ZMkWSNbuSk5Oj+fPn68knn5QkNTQ0KDMzU+vXr9d9993Xodf1er1KS0tTQ0ODUlNTIzV8AEAn+HzWTMqVYaWZyyXl5kqVlVwe6ipC/fy2bdFtZWWl6uvrNX78eH9bWlqaRo8erfLy8lb3a2xslNfrDXgAAJxt+/bWw4okGSNVV1v9gGBsCyz19fWSpMzMzID2zMxM/7ZgSktLlZaW5n/k5eVFdJwAgM6rqwtvP3Q9MXdbc0lJiRoaGvyP6upqu4cEAGhHdnZ4+6HrsS2wZGVlSZKOHj0a0H706FH/tmCSkpKUmpoa8AAAOFthobVGxeUKvt3lkvLyrH5AMLYFloEDByorK0ubN2/2t3m9Xu3atUsFBQV2DQsAEAFut/TCC9Z/Xxlamp+vWcOCW7QuooHl9OnTqqioUEVFhSRroW1FRYWqqqrkcrlUXFysH/3oR/rVr36lTz75RA899JBycnL8dxIBAOJHUZG0caPUr19ge26u1V5UZM+4EBsielvz1q1bNW7cuBbt06dP1/r162WM0ZIlS/TTn/5UJ0+e1De+8Q2VlZVpyJAhHT4GtzUDQHhEqwItlW4hhf75HbU6LJFCYAGAzvN4pLlzA289zs21LuMw84FIiJk6LAAAZ6ACLWIBgQUAujCfz5pZCTbX3txWXGz1A+xEYAGALowKtIgVBBYA6MKoQItYQWABgC6MCrSIFQQWAOjCqECLWEFgAYAujAq0iBUEFgDo4qhAi1jQze4BAADsV1Qk3XWXVFYmHT4s5edLs2dLiYl2jwywEFgAAEEr3f7rv1LpFs7BJSEA6OKodItYQGABgC6MSreIFQQWAOjCqHSLWEFgAYAujEq3iBUEFgDowqh0i1hBYAGALoxKt4gVBBYA6MKodItYQWABgC6OSreIBRSOAwCoqEiaPNm6G6iuzlqzUljIzAqcg8ACAJBkhZOxY+0eBRAcl4QAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjEVgAAIDjdbN7AAAQi3w+aft2qa5Oys6WCgslt9vuUQHxy/YZlqeffloulyvgMWzYMLuHBQCt8nikAQOkceOk+++3fg4YYLUDiAxHzLDceOONeu+99/zPu3VzxLAAoAWPR5o6VTImsL221mrfuFEqKrJnbEA8c0Qy6Natm7KysuweBgC0yeeT5s5tGVYkq83lkoqLpcmTuTwEhJvtl4Qk6eDBg8rJydGgQYP0wAMPqKqqqtW+jY2N8nq9AQ8AiIbt26Wamta3GyNVV1v9AISX7YFl9OjRWr9+vd599129+OKLqqysVGFhoU6dOhW0f2lpqdLS0vyPvLy8KI8YQFdVVxfefgA6zmVMsMlN+5w8eVL9+/fX6tWrNXPmzBbbGxsb1djY6H/u9XqVl5enhoYGpaamRnOoALqYrVutBbbt2bJFGjs20qMBYpvX61VaWlqHP78dsYblcunp6RoyZIgOHToUdHtSUpKSkpKiPCoAsG5dzs21FtgG+189l8vaXlgY/bEB8c72S0JXOn36tA4fPqzs7Gy7hwIAAdxu6YUXrP92uQK3NT9fs4YFt0Ak2B5YnnzySW3btk2fffaZduzYoe9+97tyu92aNm2a3UMDgBaKiqxbl/v1C2zPzeWWZiCSbL8kVFNTo2nTpunEiRPKyMjQN77xDe3cuVMZGRl2Dw0Agioqsm5dptItED2OW3QbqlAX7QAAAPuF+vlt+yUhAACA9hBYAACA4xFYAACA4xFYAACA4xFYAACA4xFYAACA4xFYAACA4xFYAACA49le6RYAwsXno/osEK8ILADigscjzZ0r1dRcasvNtb6skO/3AWIfl4QAxDyPR5o6NTCsSFJtrdXu8dgzLgDhQ2ABENN8PmtmJdi3ojW3FRdb/QDELgILgJi2fXvLmZXLGSNVV1v9AMQuAguAmFZXF95+AJyJwAIgpmVnh7cfAGcisACIaYWF1t1ALlfw7S6XlJdn9QMQuwgsAGKa223duiy1DC3Nz9esoR4LEOsILABiXlGRtHGj1K9fYHturtVOHRYg9lE4DkBcKCqSJk+m0i0QrwgsAOKG2y2NHWv3KABEApeEAACA4xFYAACA4xFYAACA4xFYAACA4xFYAACA4xFYAACA4xFYAACA41GHBUDE+XwUdAPQOQQWABHl8Uhz50o1NZfacnOt7/+hZD6AjuKSEICI8XikqVMDw4ok1dZa7R6PPeMCEHsILAAiwuezZlaMabmtua242OoHAO0hsACIiO3bW86sXM4Yqbra6gcA7SGwAIiIurrw9gPQtRFYAEREdnZ4+wHo2ggsACKisNC6G8jlCr7d5ZLy8qx+ANAeAguAiHC7rVuXpZahpfn5mjXUYwHQMQQWABFTVCRt3Cj16xfYnptrtVOHBUBHUTgOQEQVFUl33SWVlUmHD0v5+dLs2VJiot0jAxBLHDHDsnbtWg0YMEA9evTQ6NGj9eGHH9o9JABh4vFYIeWJJ6Sf/MT6mZ9P0TgAobE9sPzyl7/UvHnztGTJEn388ccaMWKEJk6cqGPHjtk9NACdRKVbAOHiMiZYHcroGT16tG655Rb95Cc/kSRdvHhReXl5euyxx7R48eJ29/d6vUpLS1NDQ4NSU1MjPVwAHeTzSQMGtF48zuWy1rJUVrLwFuiKQv38tnWGpampSbt379b48eP9bQkJCRo/frzKy8uD7tPY2Civ1xvwAOA8VLoFEE62Bpa//OUv8vl8yszMDGjPzMxUfX190H1KS0uVlpbmf+Tl5UVjqABCRKVbAOFk+xqWUJWUlKihocH/qK6utntIAIKg0i2AcLL1tuY+ffrI7Xbr6NGjAe1Hjx5VVlZW0H2SkpKUlJQUjeEB6ITmSre1tcG/sbl5DQuVbgF0hK0zLImJiRo1apQ2b97sb7t48aI2b96sgoICG0cGoLOodAsgnGy/JDRv3jz9x3/8h1599VXt27dPs2bN0pkzZ/Twww/bPTQAnUSlWwDhYnul23vvvVfHjx/XU089pfr6ev3VX/2V3n333RYLcQGEl89n3aFTV2etIyksjMxsB5VuAYSD7XVYOos6LEDoPB5p7tzA245zc61LOOGe9YjmsQDEjpiqwwIg+qJZfZZKtwDChRkWoAuJZvVZKt0CaAszLABaFc3qs1S6BRBOBBagC4lm9Vkq3QIIJwIL0IVEs/oslW4BhBOBBehCmqvPXlnIrZnLJeXlhaf6bDSPBSD+EViALiSa1WepdAsgnAgsQBcTzeqzVLoFEC7c1gx0UdGqdBvtYwGIDaF+fttemh+APdxuaezY+DsWgPjEJSEAAOB4BBYAAOB4BBYAAOB4BBYAAOB4BBYAAOB4BBYAAOB4BBYAAOB4BBYAAOB4FI4DHIaqsADQEoEFcBCPR5o7V6qpudSWm2t9iSDfuwOgK+OSEOAQHo80dWpgWJGk2lqr3eOxZ1wA4AQEFsABfD5rZiXYV5E2txUXW/0AoCsisAAOsH17y5mVyxkjVVdb/QCgKyKwAA5QVxfefgAQbwgsgANkZ4e3HwDEGwIL4ACFhdbdQC5X8O0ul5SXZ/UDgK6IwAI4gNtt3bostQwtzc/XrKEeC4Cui8ACOERRkbRxo9SvX2B7bq7VTh0WAF0ZheMABykqkiZPptItAFyJwAI4jNstjR1r9ygAwFm4JAQAAByPwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAABzP1sAyYMAAuVyugMeKFSvsHBIAAHAg2yvdLlu2TI888oj/eUpKio2jAQAATmR7YElJSVFWVpbdwwAAAA5m+xqWFStW6Nprr9XIkSO1atUqXbhwwe4hAQAAh7F1huXxxx/XzTffrN69e2vHjh0qKSlRXV2dVq9e3eo+jY2Namxs9D/3er3RGCoAALCRyxhjwvmCixcv1rPPPttmn3379mnYsGEt2l955RV9//vf1+nTp5WUlBR036efflpLly5t0d7Q0KDU1NSrGzQAAIgqr9ertLS0Dn9+hz2wHD9+XCdOnGizz6BBg5SYmNiife/evRo+fLj279+voUOHBt032AxLXl4egQUAgBgSamAJ+yWhjIwMZWRkXNW+FRUVSkhIUN++fVvtk5SU1OrsCwAAiE+2rWEpLy/Xrl27NG7cOKWkpKi8vFxPPPGE/v7v/17XXHONXcMCAAAOZFtgSUpK0oYNG/T000+rsbFRAwcO1BNPPKF58+bZNSQAAOBQtgWWm2++WTt37rTr8AAAIIbYXocFAACgPQQWAADgeAQWAADgeAQWAADgeAQWAADgeAQWAADgeAQWAADgeAQWAADgeLYVjgNiic8nbd8u1dVJ2dlSYaHkdts9KgDoOggsQDs8HmnuXKmm5lJbbq70wgtSUZF94wKAroRLQkAbPB5p6tTAsCJJtbVWu8djz7gAoKshsACt8PmsmRVjWm5rbisutvoBACKLwAK0Yvv2ljMrlzNGqq62+gEAIovAArSiri68/QAAV4/AArQiOzu8/QAAV4/AArSisNC6G8jlCr7d5ZLy8qx+AIDIIrAArXC7rVuXpZahpfn5mjXUYwGAaCCwAG0oKpI2bpT69Qtsz8212qnDAgDRQeE4oB1FRdLkyVS6BQA7EViADnC7pbFj7R4FAHRdXBICAACOR2ABAACOR2ABAACOR2ABAACOR2ABAACOR2ABAACOR2ABAACOR2ABAACOR+E4xDSfjwq0ANAVEFgQszweae5cqabmUlturvWFhXzHDwDEFy4JISZ5PNLUqYFhRZJqa612j8eecQEAIoPAgpjj81kzK8a03NbcVlxs9QMAxAcCC2LO9u0tZ1YuZ4xUXW31AwDEBwILYk5dXXj7AQCcj8CCmJOdHd5+AADnI7Ag5hQWWncDuVzBt7tcUl6e1Q8AEB8ILIg5brd167LUMrQ0P1+zhnosABBPCCyISUVF0saNUr9+ge25uVY7dVgAIL5QOA4xq6hImjyZSrcA0BVEbIZl+fLlGjNmjJKTk5Wenh60T1VVlSZNmqTk5GT17dtXCxYs0IULFyI1JMQht1saO1aaNs36SVgBgPgUsRmWpqYm3XPPPSooKNDLL7/cYrvP59OkSZOUlZWlHTt2qK6uTg899JC6d++uZ555JlLDAgAAMchlTLB6oeGzfv16FRcX6+TJkwHtv/3tb3XXXXfpyJEjyszMlCS99NJLWrRokY4fP67ExMQOvb7X61VaWpoaGhqUmpoa7uEDAIAICPXz27ZFt+Xl5brpppv8YUWSJk6cKK/Xq71797a6X2Njo7xeb8ADAADEN9sCS319fUBYkeR/Xl9f3+p+paWlSktL8z/y8vIiOk4AAGC/kALL4sWL5XK52nzs378/UmOVJJWUlKihocH/qK6ujujxAACA/UJadDt//nzNmDGjzT6DBg3q0GtlZWXpww8/DGg7evSof1trkpKSlJSU1KFjAACA+BBSYMnIyFBGRkZYDlxQUKDly5fr2LFj6tu3ryRp06ZNSk1N1Q033BCWYwAAgPgQsduaq6qq9MUXX6iqqko+n08VFRWSpMGDB6tXr16aMGGCbrjhBj344INauXKl6uvr9cMf/lBz5sxhBgUAAASI2G3NM2bM0KuvvtqifcuWLRo7dqwk6fPPP9esWbO0detWfeUrX9H06dO1YsUKdevW8RzFbc0AAMSeUD+/I16HJdIILAAAxJ6YqcMCAADQUQQWAADgeAQWAADgeAQWAADgeAQWAADgeAQWAADgeAQWAADgeAQWAADgeBErzQ/n8fmk7dulujopO1sqLJTcbrtHBQBA+wgsXYTHI82dK9XUXGrLzZVeeEEqKrJvXAAAdASXhLoAj0eaOjUwrEhSba3V7vHYMy4AADqKwBLnfD5rZiXYN0Y1txUXW/0AAHAqAkuc27695czK5YyRqqutfgAAOBWBJc7V1YW3HwAAdiCwxLns7PD2AwDADgSWOFdYaN0N5HIF3+5ySXl5Vj8AAJyKwBLn3G7r1mWpZWhpfr5mDfVYAADORmDpAoqKpI0bpX79Attzc6126rAAAJyOwnE2i1b12aIi6c47pQULpIMHpeuvl1atknr2DP+xAAAIN2ZYbOTxSAMGSOPGSfffb/0cMCAyhdwWLpRSUqS1a6Xf/976mZJitQMA4HQEFptEs/rswoXWbMqVxeF8Pqud0AIAcDqXMcFqoMYOr9ertLQ0NTQ0KDU11e7hdIjPZ82ktFbQzeWy1pdUVnb+8lBTk5Sc3HYlW7dbOntWSkzs3LEAAOioUD+/mWGxQTSrz5aVtV923+ez+gEA4FQEFhtEs/rs4cPh7QcAgB0ILDaIZvXZ/Pzw9gMAwA6sYbFB8xqW2trg36LMGhYAQLxjDUsMiGb12cREad68tvvMm0dYAQA4G4HFJtGsPrtypVUw7soA5HZb7StXhu9YAABEApeEbBatSreSdXmorMxaYJufL82ezcwKAMAeoX5+E1gAAEDUsYYFAADEHQILAABwPAILAABwPAILAABwPAILAABwPAILAABwPAILAABwvG52D8CpolXQ7csvrWqzBw9K118vrVol9ewZ/uMAABDLIjbDsnz5co0ZM0bJyclKT08P2sflcrV4bNiwIVJD6jCPx/pywnHjpPvvt34OGGC1h9OUKdYXE65dK/3+99bP5GSrHQAAXBKxwNLU1KR77rlHs2bNarPfunXrVFdX539MsfnT2uORpk6VamoC22trrfZwhZYpU6S33gq+7a23CC0AAFwuYpeEli5dKklav359m/3S09OVlZUVqWGExOeT5s6Vgn1ZgTHWNykXF0uTJ3fu8tCXX7YeVpq99ZbVj8tDAAA4YNHtnDlz1KdPH91666165ZVX1N5XGzU2Nsrr9QY8wmX79pYzK5czRqqutvp1xoIF4e0HAEC8s3XR7bJly/Q3f/M3Sk5O1u9//3vNnj1bp0+f1uOPP97qPqWlpf7Zm3Crqwtvv9YcPBjefgAAxLuQZlgWL14cdKHs5Y/9+/d3+PX++Z//WbfddptGjhypRYsWaeHChVq1alWb+5SUlKihocH/qK6uDuVXaFN2dnj7teb668PbDwCAeOcy7V2Duczx48d14sSJNvsMGjRIiYmJ/ufr169XcXGxTp482e7r/+Y3v9Fdd92lc+fOKSkpqUNjCvXrqdvi81l3A9XWBl/H4nJJublSZWXn17AkJ7ff7+xZ1rAAAOJTqJ/fIV0SysjIUEZGxlUPrj0VFRW65pprOhxWws3tll54wbobyOUKDC0ul/VzzZrO12Pp2dNauNvWwtvJkwkrAAA0i9galqqqKn3xxReqqqqSz+dTRUWFJGnw4MHq1auX3n77bR09elRf//rX1aNHD23atEnPPPOMnnzyyUgNqUOKiqSNG627hS5fgJuba4WVoqLwHOfNN1u/tXnyZGs7AACwhHRJKBQzZszQq6++2qJ9y5YtGjt2rN59912VlJTo0KFDMsZo8ODBmjVrlh555BElJHR8aU04Lwldjkq3AABETqif3xELLNESqcACAAAiJ9TPb9vrsAAAALSHwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAAByPwAIAABwvYt8lFC3NhXq9Xq/NIwEAAB3V/Lnd0YL7MR9YTp06JUnKy8uzeSQAACBUp06dUlpaWrv9Yv67hC5evKgjR44oJSVFLpcrrK/t9XqVl5en6urqLv09RZwHC+fBwnm4hHNh4TxYOA+XdORcGGN06tQp5eTkdOhLj2N+hiUhIUG5ubkRPUZqamqXf/NJnIdmnAcL5+ESzoWF82DhPFzS3rnoyMxKMxbdAgAAxyOwAAAAxyOwtCEpKUlLlixRUlKS3UOxFefBwnmwcB4u4VxYOA8WzsMlkTgXMb/oFgAAxD9mWAAAgOMRWAAAgOMRWAAAgOMRWAAAgON16cCyfPlyjRkzRsnJyUpPTw/ap6qqSpMmTVJycrL69u2rBQsW6MKFC22+7hdffKEHHnhAqampSk9P18yZM3X69OkI/AaRsXXrVrlcrqCPjz76qNX9xo4d26L/D37wgyiOPPwGDBjQ4ndasWJFm/ucO3dOc+bM0bXXXqtevXrp7rvv1tGjR6M04vD77LPPNHPmTA0cOFA9e/ZUfn6+lixZoqampjb3i5f3w9q1azVgwAD16NFDo0eP1ocffthm/9dff13Dhg1Tjx49dNNNN+mdd96J0kgjo7S0VLfccotSUlLUt29fTZkyRQcOHGhzn/Xr17f42/fo0SNKI46cp59+usXvNWzYsDb3ibf3gxT830WXy6U5c+YE7R+u90OXDixNTU265557NGvWrKDbfT6fJk2apKamJu3YsUOvvvqq1q9fr6eeeqrN133ggQe0d+9ebdq0Sb/+9a/1wQcf6Hvf+14kfoWIGDNmjOrq6gIe//iP/6iBAwfqr//6r9vc95FHHgnYb+XKlVEadeQsW7Ys4Hd67LHH2uz/xBNP6O2339brr7+ubdu26ciRIyoqKorSaMNv//79unjxov793/9de/fu1fPPP6+XXnpJ//RP/9TuvrH+fvjlL3+pefPmacmSJfr44481YsQITZw4UceOHQvaf8eOHZo2bZpmzpypPXv2aMqUKZoyZYo+/fTTKI88fLZt26Y5c+Zo586d2rRpk86fP68JEybozJkzbe6Xmpoa8Lf//PPPozTiyLrxxhsDfq8//OEPrfaNx/eDJH300UcB52DTpk2SpHvuuafVfcLyfjAw69atM2lpaS3a33nnHZOQkGDq6+v9bS+++KJJTU01jY2NQV/rz3/+s5FkPvroI3/bb3/7W+NyuUxtbW3Yxx4NTU1NJiMjwyxbtqzNft/85jfN3LlzozOoKOnfv795/vnnO9z/5MmTpnv37ub111/3t+3bt89IMuXl5REYoT1WrlxpBg4c2GafeHg/3HrrrWbOnDn+5z6fz+Tk5JjS0tKg/f/u7/7OTJo0KaBt9OjR5vvf/35ExxlNx44dM5LMtm3bWu3T2r+psW7JkiVmxIgRHe7fFd4Pxhgzd+5ck5+fby5evBh0e7jeD116hqU95eXluummm5SZmelvmzhxorxer/bu3dvqPunp6QEzEePHj1dCQoJ27doV8TFHwq9+9SudOHFCDz/8cLt9f/7zn6tPnz4aPny4SkpKdPbs2SiMMLJWrFiha6+9ViNHjtSqVavavCS4e/dunT9/XuPHj/e3DRs2TNddd53Ky8ujMdyoaGhoUO/evdvtF8vvh6amJu3evTvgb5mQkKDx48e3+rcsLy8P6C9Z/2bE299eUrt//9OnT6t///7Ky8vT5MmTW/03M9YcPHhQOTk5GjRokB544AFVVVW12rcrvB+ampr0s5/9TP/wD//Q5hcQh+P9EPNffhhJ9fX1AWFFkv95fX19q/v07ds3oK1bt27q3bt3q/s43csvv6yJEye2+yWT999/v/r376+cnBz97//+rxYtWqQDBw7I4/FEaaTh9/jjj+vmm29W7969tWPHDpWUlKiurk6rV68O2r++vl6JiYkt1kRlZmbG7N//SocOHdKPf/xjPffcc232i/X3w1/+8hf5fL6g/wbs378/6D6t/ZsRL3/7ixcvqri4WLfddpuGDx/ear+hQ4fqlVde0de+9jU1NDToueee05gxY7R3796If1ltJI0ePVrr16/X0KFDVVdXp6VLl6qwsFCffvqpUlJSWvSP9/eDJL355ps6efKkZsyY0WqfsL0fOj1H4zCLFi0yktp87Nu3L2Cf1qarHnnkETNhwoSAtjNnzhhJ5p133gl6/OXLl5shQ4a0aM/IyDBlZWVX/4uFwdWcm+rqapOQkGA2btwY8vE2b95sJJlDhw6F61cIi6s5D81efvll061bN3Pu3Lmg23/+85+bxMTEFu233HKLWbhwYVh/j866mvNQU1Nj8vPzzcyZM0M+nlPfD62pra01ksyOHTsC2hcsWGBuvfXWoPt0797dvPbaawFta9euNX379o3YOKPpBz/4genfv7+prq4Oab+mpiaTn59vfvjDH0ZoZPb4v//7P5Oammr+8z//M+j2eH8/GGPMhAkTzF133RXSPlf7foi7GZb58+e3mfQkadCgQR16raysrBZ3BDTf7ZGVldXqPlcuyLtw4YK++OKLVveJlqs5N+vWrdO1116rv/3bvw35eKNHj5Zk/R95fn5+yPtHSmfeI6NHj9aFCxf02WefaejQoS22Z2VlqampSSdPngyYZTl69Kjtf/8rhXoejhw5onHjxmnMmDH66U9/GvLxnPp+aE2fPn3kdrtb3OHV1t8yKysrpP6x5NFHH/XfRBDqLEn37t01cuRIHTp0KEKjs0d6erqGDBnS6u8Vz+8HSfr888/13nvvhTxrerXvh7gLLBkZGcrIyAjLaxUUFGj58uU6duyY/zLPpk2blJqaqhtuuKHVfU6ePKndu3dr1KhRkqT3339fFy9e9P+DbZdQz40xRuvWrdNDDz2k7t27h3y8iooKSVJ2dnbI+0ZSZ94jFRUVSkhIaHHZr9moUaPUvXt3bd68WXfffbck6cCBA6qqqlJBQcFVjzkSQjkPtbW1GjdunEaNGqV169YpISH05W9OfT+0JjExUaNGjdLmzZs1ZcoUSdYlkc2bN+vRRx8Nuk9BQYE2b96s4uJif9umTZsc97cPhTFGjz32mN544w1t3bpVAwcODPk1fD6fPvnkE33729+OwAjtc/r0aR0+fFgPPvhg0O3x+H643Lp169S3b19NmjQppP2u+v0Q0nxMnPn888/Nnj17zNKlS02vXr3Mnj17zJ49e8ypU6eMMcZcuHDBDB8+3EyYMMFUVFSYd99912RkZJiSkhL/a+zatcsMHTrU1NTU+NvuuOMOM3LkSLNr1y7zhz/8wVx//fVm2rRpUf/9Ouu9995r9fJITU2NGTp0qNm1a5cxxphDhw6ZZcuWmT/96U+msrLSvPXWW2bQoEHm9ttvj/aww2bHjh3m+eefNxUVFebw4cPmZz/7mcnIyDAPPfSQv8+V58EYa9r8uuuuM++//77505/+ZAoKCkxBQYEdv0JY1NTUmMGDB5tvfetbpqamxtTV1fkfl/eJx/fDhg0bTFJSklm/fr3585//bL73ve+Z9PR0/52DDz74oFm8eLG//x//+EfTrVs389xzz5l9+/aZJUuWmO7du5tPPvnErl+h02bNmmXS0tLM1q1bA/72Z8+e9fe58jwsXbrU/O53vzOHDx82u3fvNvfdd5/p0aOH2bt3rx2/QtjMnz/fbN261VRWVpo//vGPZvz48aZPnz7m2LFjxpiu8X5o5vP5zHXXXWcWLVrUYluk3g9dOrBMnz496HX7LVu2+Pt89tln5s477zQ9e/Y0ffr0MfPnzzfnz5/3b9+yZYuRZCorK/1tJ06cMNOmTTO9evUyqamp5uGHH/aHoFgybdo0M2bMmKDbKisrA85VVVWVuf32203v3r1NUlKSGTx4sFmwYIFpaGiI4ojDa/fu3Wb06NEmLS3N9OjRw3z1q181zzzzTMD6lSvPgzHGfPnll2b27NnmmmuuMcnJyea73/1uwId7rFm3bl2ra1yaxfP74cc//rG57rrrTGJiorn11lvNzp07/du++c1vmunTpwf0/5//+R8zZMgQk5iYaG688Ubzm9/8JsojDq/W/vbr1q3z97nyPBQXF/vPWWZmpvn2t79tPv744+gPPszuvfdek52dbRITE02/fv3MvffeG7Amqyu8H5r97ne/M5LMgQMHWmyL1PvBZYwxoc3JAAAARBd1WAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOMRWAAAgOP9P0aIa4oblq/DAAAAAElFTkSuQmCC"
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T03:45:47.739944Z",
"start_time": "2025-06-20T03:45:45.691324Z"
}
},
"cell_type": "code",
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"\n",
"class LinearModel(nn.Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.weight = nn.Parameter(torch.randn(1))\n",
" self.bias = nn.Parameter(torch.randn(1))\n",
"\n",
" def forward(self, input):\n",
" return (input * self.weight) + self.bias"
],
"id": "486e20a4a7c20233",
"outputs": [],
"execution_count": 4
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T03:47:51.773370Z",
"start_time": "2025-06-20T03:47:51.768840Z"
}
},
"cell_type": "code",
"source": [
"model = LinearModel()\n",
"x = torch.tensor(3)\n",
"y = model(x)"
],
"id": "19dedcd64e05987a",
"outputs": [],
"execution_count": 6
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T05:54:16.689947Z",
"start_time": "2025-06-20T05:54:16.516438Z"
}
},
"cell_type": "code",
"source": [
"model = LinearModel()\n",
"\n",
"# 定义优化器\n",
"optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, weight_decay=1e-2, momentum=0.9)\n",
"\n",
"y_train = torch.tensor(y_train, dtype=torch.float32)\n",
"\n",
"# 训练模型\n",
"for epoch in range(1000):\n",
" input = torch.from_numpy(x_train)\n",
" output = model(input)\n",
" loss = nn.functional.mse_loss(output, y_train)\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()"
],
"id": "3b40494406ef96b2",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_9/825497026.py:6: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
" y_train = torch.tensor(y_train, dtype=torch.float32)\n"
]
}
],
"execution_count": 9
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T05:55:55.458462Z",
"start_time": "2025-06-20T05:55:55.449290Z"
}
},
"cell_type": "code",
"source": [
"for param in model.parameters():\n",
" print(param)"
],
"id": "a7207847d5903540",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Parameter containing:\n",
"tensor([2.0042], requires_grad=True)\n",
"Parameter containing:\n",
"tensor([3.4570], requires_grad=True)\n"
]
}
],
"execution_count": 11
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T06:20:05.488514Z",
"start_time": "2025-06-20T06:20:05.470846Z"
}
},
"cell_type": "code",
"source": [
"class CustomLayer(nn.Module):\n",
" def __init__(self, in_features, out_features):\n",
" super().__init__()\n",
" self.weight = nn.Parameter(torch.randn(in_features, out_features))\n",
" self.bias = nn.Parameter(torch.randn(out_features))\n",
"\n",
" def forward(self, input):\n",
" return input @ self.weight + self.bias"
],
"id": "23a70c5f5fdf3a8b",
"outputs": [],
"execution_count": 12
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T06:21:32.484886Z",
"start_time": "2025-06-20T06:21:32.473805Z"
}
},
"cell_type": "code",
"source": [
"print(model.state_dict())\n",
"torch.save(model.state_dict(), './data/linear_model.pth')"
],
"id": "c05b699e077da635",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OrderedDict([('weight', tensor([2.0042])), ('bias', tensor([3.4570]))])\n"
]
}
],
"execution_count": 15
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T06:23:45.159394Z",
"start_time": "2025-06-20T06:23:45.130887Z"
}
},
"cell_type": "code",
"source": [
"# 定义网络结构\n",
"linear_model = LinearModel()\n",
"# 加载保存的参数\n",
"linear_model.load_state_dict(torch.load('./data/linear_model.pth'))\n",
"linear_model.eval()\n",
"for param in linear_model.parameters():\n",
" print(param)"
],
"id": "7dc7a1119175cc2",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Parameter containing:\n",
"tensor([2.0042], requires_grad=True)\n",
"Parameter containing:\n",
"tensor([3.4570], requires_grad=True)\n"
]
}
],
"execution_count": 16
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T07:20:23.604433Z",
"start_time": "2025-06-20T07:20:23.600137Z"
}
},
"cell_type": "code",
"source": [
"import os\n",
"\n",
"os.environ['TORCH_HOME'] = './data' # 修改存储目录\n",
"\n",
"import torch\n",
"\n",
"print(torch.hub.get_dir()) # 默认是 ~/.cache/torch"
],
"id": "1a0f91d943b9e60e",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"./data/hub\n"
]
}
],
"execution_count": 22
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T07:59:31.298916Z",
"start_time": "2025-06-20T07:59:28.729703Z"
}
},
"cell_type": "code",
"source": [
"import torchvision.models as models\n",
"\n",
"alexnet = models.alexnet(pretrained=True)"
],
"id": "f7cf25e3df05dcab",
"outputs": [],
"execution_count": 43
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T08:01:21.000801Z",
"start_time": "2025-06-20T08:01:20.775310Z"
}
},
"cell_type": "code",
"source": [
"from PIL import Image\n",
"import torchvision\n",
"from torchvision import transforms\n",
"\n",
"im = Image.open('./data/images/dog.jpg')\n",
"\n",
"transform = transforms.Compose([\n",
" transforms.Resize((224, 224)),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
"])\n",
"\n",
"input_tensor = transform(im).unsqueeze(0)\n",
"alexnet.eval()\n",
"alexnet(input_tensor).argmax()"
],
"id": "363a730343340cf",
"outputs": [
{
"data": {
"text/plain": [
"tensor(263)"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 47
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T07:46:19.844490Z",
"start_time": "2025-06-20T07:46:05.465274Z"
}
},
"cell_type": "code",
"source": [
"cifar10_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(),\n",
" target_transform=None, download=True)"
],
"id": "305336b3d960dd2f",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using downloaded and verified file: ./data/cifar-10-python.tar.gz\n",
"Extracting ./data/cifar-10-python.tar.gz to ./data\n"
]
}
],
"execution_count": 27
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T07:47:16.046369Z",
"start_time": "2025-06-20T07:47:16.026552Z"
}
},
"cell_type": "code",
"source": [
"from torch.utils.data import DataLoader\n",
"\n",
"tensor_dataloader = DataLoader(cifar10_dataset, batch_size=48)\n",
"\n",
"data_iter = iter(tensor_dataloader)\n",
"images, labels = next(data_iter)\n",
"print(images.shape)\n",
"\n",
"grid_tensor = torchvision.utils.make_grid(images, nrow=16, padding=2)\n",
"grid_img = transforms.ToPILImage()(grid_tensor)\n",
"grid_img.show()"
],
"id": "35b35dbedbfcba10",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([48, 3, 32, 32])\n"
]
},
{
"data": {
"text/plain": [
"<PIL.Image.Image image mode=RGB size=546x104>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAABoCAIAAABDigxeAAEAAElEQVR4Aez9aZAsaXaeB4a7h3u4e+x7RO7bzbx73Vpu7dVd1d1Ad6ObIECATYCcIWkiZZKMGlEyjWSSOGPkjA01/DE0kjOiiRJJkCNRHAIE0AAaaPSC3mqvunX3LW/uS2TGvu/h7uHzfBF5C02QI5u/MiuvqqzMyMj43L/lLO95zzkez2fXZzPw2Qx8NgOfzcBnM/DZDHw2A5/NwGcz8NkMfDYD/1ucAWl607/2nz4ruWNN9UqyPBoNbcfSNM0Zj92xK8mOrHhcyy95HFUbKB7e4zpj27LH47Hkkby2Iw3HEh/EuyVJGo0sx/HyabLHGY3HXdvTGzn/j3+9z0Dlctm2bd7z75ypP/m66/G4/ONxZfF/efI/j8QQY9fDR8iuyy/FNf1DfsxkMvz4az/c8zh2tVwYDgYrq2uRcEhVZE1VNL7KMnfm2P2AX1UVyatIiqzU67VgMKiqPLwiyZI9Hsmy+FhZknvdntfr1XV9NBrZo6GhG5KsxMImv/3H/+QfBhLrhqKFgoH20Om2qrI8HntcrywbXp+ueLlBDw/qepyxw9fx2BG/9fJ7ZXrDksTcMocOn8YrPp9Pk30e1ydpSq/6+M2v/llef+tLz6nBUKleq9Uaw/Ygmgl5Y3FJlT2KbLWto1uP1JA2fy5reKWxpTq2FE3q2eW44vWOHduraq2aVS6UrLH0yovn3aH9ve+9Pbs0a6i+0+OCYgSC/uAPfv2HjPKt//KXNkult+/u+k3z+rn5CJPd7VuurQYMWZZbrTb35pGVZq/fHA4dr6YH4rXuqFAuefp2SNV5TNsz7lpDn2HY7ArLCfj0ZCx+VCx2RxZz8K27jxnln58LZgPjjK7okh3U3UiAybccyZFVybI97f64P5QcV1Zk2fK49a7VHUmsuxNatZ9/vvWTH5e8UnGkxbrl/bpqB0KeQKDY64WHPV+321PGytj9n6oWo/zSX/yz/BUXO80rSSyDprF1ZY9kKaql6aN+f2gNFWukjB2NfT6wu47Yp2PXlcYOf8W/jvX0Glu2Ox7LkjRkA1gWn1nOlxklHU/bsipb/cuLyb/yy1/NRLjnkWX5BkNHlnshnyIOg7gPsYF5TsdxG63h9lFxt1gLp2aUsXzp3NyFlbTUb2uSZDO2LDYf58p1+G/82n/0dxjlyeO7w+HQ8nRHo348OGuPPMNht1Yvjl273RgNGgNFV6pO12uqrXZbUeRMJplJZeZSM16Pajs92xn6zbDrOqPh6Lhw2Gw3AoFAMGAeFU77g4HU9fzFv/DXGOXP/5/+IV+ne5InRQJMf1QljyJOtIc9IF5VxFmcnDnxZSzJuutRPdJIkhzJ8nqYKJe3c24cnppz5HCN2Rv/5G/+J3yg61ocBP5evIU3cTim6zT9URbHmcERKOLUTC8xe+KMT+/t6WtC0Dy+e7/aqL38+muIqekfypLGG/7Cmwv9kUcNz8uhjKY6yrjPfDqKb6wYzHO9Vr1x626721e8muTx8n5+KW6J/0uWZ8wj8qi23xSCwbEdxEKr1WIFvB72v8ceO7V2j79aXVucm8sUiqf1Zm1pbj6fY0u4mqZyn4PBqNcbdrtdY3I5fIqkDEaWrioBQ5tJxmPRSDGXr1VrHo+iKJo1sobu0JURArI1ckcjR1W8tUGfUT789a9VT0+jmbg1HI87HCyz3WXnn1fN2edefVnWwrdv3PuZr/+iqnnZvGKuXfEsTB+XjYDmJDqj3tgK6SHT0J8KS7En2e18vulX+Hpj/8lO7rDW77DqMX9I0dRau9UedNk8uq6xr5qNBgJQ13z8FfsfScj+RDVMP2Rsc2YcRmRoPtrmv8mGYceoqubz6f/3v/ifMoqYa66RkNp9xvd5/Mgwr5fTIkQkEk0csLHi5fyjYTitY8tjD1Eh47EyknSWcMQ3jswZlca2riLHkeUuJ9XD8fGw5SQOwHQU5nX6zb/zK/f6J14X556X+Gy2nouuY7fzFMwRL/871Mz0zwOmT3a9w65vPOrpmuQ3vF4hZhyfVzbQM57x0OF7XVPZUh6vl4lVZCS+Z+zT0ESebs/idsX2RZbLkur1ooGs4ZDnMpC2T29y7Oq2ErVUv6MEZNXp9juu01VVz5BHl8cDr+z1IXgGzFq/1+fB+RAUMCLURY2h8DQNccYGlyRm2xuNRn1GkLM25gF9qtMJTJ/FG9CNZDQwHNbq9Vg6mFnNNgY8vrjv3qDjjK1wKJxMBb2u1mo6Y6UTSJgo+WHfcayRD+nqUSwOiWbEw6Fep9lr9cqnVYPHdBV/KDLqCw3HpQZCo6Oj588vxSKBIEvUcVzDjPiNscMHOYYPcT22B8MQj+c43eFIUbqcJ032DDA/+HM+wnVVj9ypN9mA4WDQ9GnYGX7dx9yJUzy53lrwhFRJUe1OfyS7imtLSPfBaMx2Gdrj1tDTRbMh070eR0LrSF02miT1utW9b/8g7HZcy0UU2IoUCCR2AsH7jWLYcSOSR1N42xgBMR0FeS327WSZGJqNgpzFTnJcDIWux4upJNnWkHeMPUOhAiT+UHXHFktvuRbHBinGGnrGFg/NDuRQiI8bO14kmSZkmbj4fM6VJFUbrW5/GFrIdEcdy9VG4qEkNn/I1Fl0jqLDcVd9sh4wzLG/7xsVB/tHpaV0fHZmJuA3Ja+kSbIlO2LdOf/i0NqMPx1E9Stew3Ql3RpwY2N/IOBY/V6rIxlyLBkdmzIHfiEe8Bk+RfGaEdMM6BqbnQdC9FvysK+47siLTDXDqehcLBxzxgN/wF+vtSO+SCgZnI4iK5wPIeLPfpwaWUKxMJeTWRWWnRAj4j1IAA6k5GIQeZEevEFIGG08xm6zNdUKmN5IOGZ7lINcoTtE35xJGGQ0U7H1+EkilUykU5Y1uvPhx4N+/+XPf86relHg3PdYEvJPqDqmQpxxITS5K0aeTrj4gW/t8eHjrd29vedefonDIyTb05vHdETA6qpnZTmdiAW69VKpkO8h62XHHoz3dw9b9Taa07aHioz1IOuGrvt0dgaDWyPb41gL84lw0NttdBjLNI1hWKpVGqPeKDubbfVGUzVTKpW6vWY2m/b5vDOzs349uLu71+l0ME6YJYxvJB5LPzMzU2/Ue5geY2cw6NsjpAIHyEbipGdmHMfTanbQQMg4B907ZoPaPAkaeroQ/pBnNGB3eNotS3EQyqOg3ut3btVP3/+o+Yljrmnm/PbhKROletXBcHBwWu6PEMti+TtDq4fF49QH3d5r1y6++OwV9KmYQ3EcxDUdgq+JcLjfi8fsIJoVW20gjYv2sNFucgRGQ7F2fsP0GfrAtjq9Dg/F37JSTDgXwoELFcf3018JW2OiZoQ9PRbm2nSgs03gjtFDSEhbwgLA0jN41jFKgWOiqartqhzDyZFx2FQ4FpKiuYred3yFKlanywwrrhPUFU0aozoNnz2WR2xAIV49HkscdnFNHvCPn3D64qdff/rhuW9xjIUY5v9IPnloYZ4j5sYKe1BcZ8Lr3/5zr2SzmpoyVmXHJ9s63yjSsN9TFJ/uNazhALvEtQcuOxIbROVRGQjJxlm3er1etVxOJ6LCutS8aDaGw3lAxAzxDxQJi3Y6oowSFxOMdh3oQW98MS0364FeZ8SuCujjcCTIDnFtLEFsSRaf7SzGmZps4gzLE39QHBvNq2L6iKPOVPGE4iifbTUvrphPC4SC/pqWnosZQX9z1EHxeWSv0++za/0BnSMqu8ag2xqMWmM7MWgOaoUGWzm5YGC0Dbsj3UDgq85AGfSsUc9Nx2N6KGB55Pzh6fRZbFmJR2KZbHLEu1vtzrCnaH5hOYxsHc3qEbKSDWEN+ybeq1dGTVnecXnY6w4cBavFpxqqEVSUoGEJ7T1Zu+GgpzCnY/5wIqo8nll1xHlHM+HdOrZnNOJQ48GIdcZM6Yw9XUc8v+KV2WQdSx7Y0lBymSV5PGz5nMCY3eWWJeUk5HvU6u7XeyuS6/UpOu6GcBzONoL4QchpXsXoQsVihdmtVk3Tx16fNRjiyPqDEbXd6ludPq6O7OC1C3NIWITWAH8Kq9W1hpwbnAsMEIVt51VdXWdLcMAOD0+mI7Fe2BDN3uC0UnvmfBZbrDdyLSXs8Uea7fyw50bChnC+5bHH55N8RjQQuOxPtgfuxzdvId2iyThnCKUwcRJwOG2xPTi5Em7W2R4LGDE2zBjPAV3jSuxVpAn+Yd9i7vqshmnI/c6o23Yy6YjqGt2GpUW0ft8aqz32Liqr3x34fX7DcBPx+NgJtfqlodVmrTXFwKc+exD+L2ZPnD/xrTALxO+YxbO38BKyc/J24dnwj/DbbZu3s0mE5cRsefEF/Jq0lA0nk+mD45IH5wtRcbYs0/WRKvmCT/GmMqnjo/0nt26iHZuXLweiYcXUW6WaZmpeU+fMizmZmOUj7Pqxq5p+xmPC0bXcl1dVYrFw6djbadZNY0bc96fDSKrP0BZm00upIGdcwVwO652h0x97TmutYb+dTTPtPh7N8As9irmNWOv33Hq95/frTCY2SKcBNtFamEvVqiXTrycj/r53mIyZn0qci5c2njzZrFZrms/bbnU0zffss88mEvGjo+M7d3BAMZ+YMQeYhHvzqcAhvkYdh5+TrbR7A13VAgG/MpZCsmYEwpFEeGgN9vcPhlZH8SoyKze5RrYha5iIanpW6tS63Tp/wUl1MlnPVj+Uy/vnMs6NP/xk5GJpMWFWs9u3LeElYs6yGy3bwb+OaNa18yNMAba30OATo+Dpmoj/B0x9OTvDXyB4ypVKuVKOBgNIXM6vxlFUlFariaFc73f6/T6rj9kt7BJOzOSyURlolomaESpn4sVO3Qme/amF+dSb8TpDPGQ0uk+xQcWEn4x1Nzlx3JuqGZml9VajUqn2VC9WrG9ke/uu8fiw4vpiluIfBfROs3ZSagR8XqfQWEhr8SAynbux8U4Rx9MH4264fvohp9+LjfJvX+IPuVFsFzFl23t76UxqPBolY1GEppAk/+b16ScjOcb2SPFYqjxWPViKPU314QSr8ghfayyNEFv2wPEp/sFoxElFlIgd4LrdweDmzVvYi9HQdZ8PbEusDjKWiQBpQ1oht4Q+nly2Jyh7NMCaocsiK36vL2Sq41s3RpVO9vKGVNaHkj+gSO1+VwcIQ1XFA/JImMxDU/darmJJbf/I12x65y/2ImGcBcS6PkaQ4kBrCmNOLlyVdqOmB8xgNBDJxjpDjyqrumZY3A3+BH667dYLHZ2P7bQ9kmMqetAfGFuyNfGSgDZ5DBwpsEHDp2fmZ+bmF7OzqaEm5Q5ybJ7pKJZjp9IZ3Serij7uDRCOhoEXgiEsGbrPsS0UrmbonXaHjcRmaLcaQaxvZ9juDnCsVOQgNo6qYU/7fT7hr7vjRqtlWw7eEVtpOkoVnGeM5lf7ru7x+oAjsLgHQ3wICYHVd+UeYJArqZZk8dFjZeAgejkdYwODzvE0bRZK62u+3KjnNAapsTfqdYKSR0WMY7c9VWZsA+EX4IoqMvfBV1TLaeF4dS3j9+MCjgYjOxgIhiJ4evagO3RGio1zhTOGwYC1gVnOuhqcXHxZRUCtYF7iFAnBgcibPgtfhVkgoQs9uWIVhwZ8ddBzcT09QXOsq/XSqe7qkaBfYLM+ZsBVOV6eUcTwzmXiS2vLwXjM6w5cMTpGNBYJZ5e5ZCNyVs/OywTyEiMyC9wDT4WGbLb9HaC0rnKaL83Nz7Sarf6oNVPGZM6bAWVleW7QtSIzOIn1UVdSPWbAB4QyxN7DXHbG2FGNRHROVcKdVmf6LEJriBMqDtCnh4hfIdfFqZi+SYz+6XccYZ4FicbJcLB9gTnAhPw+71w2iUNcq9Vzp3lAM3ydT08788fnC4y6Uj7edN/+vW81T04TszO3PnjPDAevf+7193/0w7WNjY1rVyxuRpYG3S6+4+72zrA3uP7qa0PLQuqdFnOVanVlY7UIdnm4e/P73/3CL/8KODZrNb05S1FSyWzEpxUf33VGfXvYRWcrPmRpyBm1iAP4TLwXY3llpddvMK/FYgntEouY49EQ6T5ynUa5EY0aeOQyQLtqVCudVDw8k070ev2TQmE6ysxMBu+k3++yhx8+3EzFk5lMane30Ww2TRN4CmPBBXBrCyRTmZub5SuOarvVZdJwf2fSGR+K0/FcuXbxmWeenVuY+8k7P7bdt2vVarvdGgxxssXVKHb7g67ik/tdW/J5Ikl51BdOQt9y7uXUUr/Pef/RvRwHzyexfEMOEc4DmhsjDqwX3Kxn2+fnYh9+eMexhi9ev2poJprg0/M4HWU0HoVCgUGr0x60uE1cLlX3p8JhKRrF/6zX60HDz8Ef9fqccaIqrKDQCzYQMu6D2CAssVAwE1sEi42fpz9OHZvpKGfejNhk3gibDAGBnY0XqSk+8W4mQ8KMkl/60s/cfP+D00a1axOM8R/myvsnJ75Idi697PqCI69PDSTtQadaOjUjsVynOBiP00HVVBXH6n1q0nArXD+9lac3Mf06fZ03PH0RgEVzXKnfGTaa3WKlhi0fZ/nF3hUH/+xt/9bHaWg3kEFG5XQBqDhDFewIOY4zG0KOg4eMhFnk+DqtBhsQGUPcBc+90evVWj3DK3PwR9bYK1BfphpvAUByCBwhjDoOz6cD46yAONs+Tg8+z0AKqmO/lEj12iNrf8uWjLHu6aoCddEs3+gYxSd840FAVwZjLzh7Ru0XakEpKYUTKDEMERwBVg4k3/t0ynxIeq+Sysy0hhXwu2FzSPxGxc5GCQCSejzNSt3w+we6E4kj0vW2CyQ/cEyfNLL7zZ6mYSO4poARjVDKPH/tvMeruIYIgJiG+tyrV7du7YmnAVP1qPVmW9XAPz2GgV7DPnIVx0CtBvwGAsK2BprhHfQwUe1UOACMuDibrQzLOP1TG7jdaI19Q18oiA2EZvFpXlYSf+upBPCcSv4OJ141R4Syek6vg7MnDSxpgDFCSM8lwscGBmLHZsMWEK8g24Cu+CCv7R0mZn3x2WY+79aLhODa8njR9IHpcru4Qui26bII6TbZQtN9wdrxr6oysaN2p9cfNvCu250yXiDQrs/EG9Pwb1k+BHE45EPCgzIJucCsgAuDCKK1JpEezhWO6XSUqcfG3Y5l9aRYqzaa1rDX747DM6oeislSoNu1CuU6PhOIfDweNHQvm4h3IJxTs6mZlQXJ5MyyzqY9IKwz4uCy0VDQjkeEhqajiHsQ0p4dL+J5vKFcKj1+/LDW8hn+VLVWLJS5eQReZWfLGgxaZkC6n6x63HZ2wb98XuUZoj7TFwkMek1bHkmqMsCftUFW2uBsZlCEGLn4dIEZT/TMT59BVKpYkD++EOWoW+SBeDdri2crOf168UBXpKWFS2tLy8lYCP9jL1ep97FykS1/LNPEn2BGDIbv/OBHQdWjWx2729jbatWP81rIv3Flw+12bG6PwBmWluR5fPdOKBAadnq9dtcZDse87lU6rXav1s7vHj38+MOE5Jzc+uThyvLCuQshYTWIq97vq53uYbMhtWtzmcSQTdlq6P6I7WsryNMg5pLsDzDzbqc5ECCjGq4UK4CkC/PJbqvvjgLhoA4y2mr2TvM1YrHEHfYOKyHTBAgA7ZmOsr+/m88XRTABeTAiTtY+OTnGEEHEY9EhKzgv/AbUAXsAjBALZn9/j2MyGI5iiSQ7FQXywgsvvfTSqzMzc7phzi2s/JW/ev70NPcP/p9/v9cX4R8uvzFkd+EodhoD16s4QwI8KlOtKNJxtZSvdDL+2OFRCSjVJwRYTyBufqx7g2XD+UR2iWCiM36wc/Dw8aP946Of//mvRAIBQBhu71Mw6Lh4mg3HIj5zPDZ7Hmt9/Vyn3zst5nFhAB1a7ZbfH5ibmVXKXlDBcDiMFuwPCO0NpoAYUnGyK8RMCNN/4tZw8xwZBDUaZPIoT72ZoRxs9kwsk2jADikOBxuHQJhPgB6K3OvVf/j7v1tsDIsd+fCkfpg/VvSAo4T8oYRqBry64QPllP2VUT87tzDod/f3i7XmABR9KRlQke5PQQC81LMI4HRw7mayYfmJ/S2OLopRbGXwOpgIVrnaanUHfSGVhrLP7PZHAROD1wNAPnnv2adMz8bTj/Sg27GDcWXO8LExUoQDLSAvQC8Xvw1JSZzaY3XarSNkDIfdHc+HTOCyu/fuXb10CWAOK1cHKhyPmG1ibLbVA/1m1YbDs03ADIqJxaBDgGE6eMfhtuUm00Zq0XabAGFuItNXXW+hioHR1Q2wKtTDYOz4g/5RuzdEfWAydwfeeEpS8ZJ8GObC5pFUSQZoPHOc280m03F8dOhXfb0q5r+uyWq30ZBNTXgqWAA+Nb4Q8UfCZjDAoXYIL3SAmqROqdYsVy9e34hnoogEn6pHQn5/LNQXMmyMaxSd97U7Z/asZhjDkVQstmfSMXBYsTmQIkKyodCRs8TpRTBD0/Q+lvOgF03F4mPNDflsSauUW/PxOAe3Wm6oEgEncC9Mc+JYhA2FEwAkOF2avBzouppbRR4i7h2eEP954LjgUxOH0TtmZwrPRiCYYoGxfCQvkp5orF8J6Feu7Up6eWhFXavdqsQD6kLIHxAIrncw7AoWweTCkmNQceOAOK6L9Y5xFw4H2p26K3dlZcgksWTdXhd9AyIKfIWX7POmUMgMD9KPrEc6iiMKXudRQfYQFpzjEf97amkyMzgfYhhJKdYaJ6VKMozfQzSwGwe1McP+QDWfy5d7LWJQ6WwCgxGXpd7qyIEQxqwZCRcb2Ilev66ryDLsKexEboi4FwoTBOPpxQB8y4MA8eAdoh0Mv3Py+DSWisrelEWoCrEZ8nu9PlcOtNu9dhNkwz08LBfz6ptfWgxFDCAOTTIGdmc4aPTbw0qtzcdD44gHFqeDiGXmQSZncPrN08EZ9qfVDOLg7MDybldsDCDxcdSv2t1aMqxkkmHsgdNi8bQGFOpD4PA2AYlMrht3H54enVinufredigVjccDLGmRzdQGLnV/9Ju/1z8p1wul+5/cE4QIj316tGuq3mAg1B3YJ1tbeGRqyOx2ut1KHckWcvqpWBC9/OB73ynmTj/3c39qOspxsV4rt3XbTpp6Mo4ZhrOIZ9wc1CsGEKTubTvE9sKFfDkUCgtDDT8+ldJANkxiqPg9PuyjkYvRqRRLtaEfQY8F4i02B5NQrpglLmz8bDZVyFfr9SZnkJ2AguGu2HIADO02EU3cxj7eGPZWs15bwKGRpO4QZx5hOlheXPjKV74Sj6f9ofDm9s6v/6tfx+P5b/6b/6rTbXz08Qfvv/e+ZQkh4zUwOdjVWiSmWtawM1L7tl2r6ao/FFP0+HxG12WgeQO72OMT4DC0IxSbLUQWcok7wesgUKuYgLfyd/7ow8N88Re/9rMb59YULLmneqZQqnVq1eeWNqxu71H+KJud69gC+h6PfPvNPJINVal5vAvJlBOL1ztQT/qVVnOASHfHSd0/F0vkq2VOFNsWacjBF2EV1A2CXgSaz1b/zJsp95WaFXn7/Z9cOOd/61IiCsUE90rgBqrjWgAS+4f7tb7PNaNKICBH20YkPIJUQSQm6g8F/KVCoQVfS0PjGEf1ihpMlQtHgWI7EyLm4EWmT1aH6LpAWrEVsWuEySgkmdhTRON4gwguSgSvBtwmYfuBZeerrVK9hf2ED8h2LFVquZP8xXMrq0tzhILE0xD4Zen5OyHvzzYBWAhBFlyyfrPlASOXLYUgxVggP5KFZdTzYMIKj2fU7TaLxR4PAMEEmHzU6emqr9xo3Hpwz+9T1lZWEDrDXtvAjSGqThATgTloTZ+F0YSemSga5LIqOb6d7cHNd+zrQ4/sc11Ta1sDTy+Qb7B3x34mX0PCB+MR9aTq6XTUdNBzXPXirpbvKWZgvH4RCAxnRsMI5Jw9ddXagpAwPrhzf3ZxJuj3R/ymO/Q0m12cCwInhBmWn1lIrMVZKNR08bB5/DgXC0YvXb7yycPDRqXjD4YRtrDDzEhQ9/F21F2A8EMikrz/8NaTR1vTZ/GH4/n9Q3AWXTeJ/Ll+ExgMYWeYms12RVl0AKBN4Qk5nlGv1RwNfZI3psvPLybqkMYIfHrdngYWLHxfaDbsHMM0BZghXIOzdXmc7/DZYGRia/GokqzhwQhGImYPDhZGgFD4iH72Gy4RvjdhZn4Nhc6NRfdt6aO9/VatuoF34I6WFY9fskHWPFiZbo8PnD4LggOPkH9QFewKQO1qtagHPdE5DaCXuB17hV9gL/g0JQg26gxlrRMI9L2K2SFYPBZQIbEvjGp74BkJi9ACSQB24F9Qteko3B0vA9eAHRLGrY2Vc4vLvrY1VthbbCZPMEDM36xXSoZPLVc7B7lSKBDEho0lkxdXz8fiiU6v5BkT5IqKiYDUpUHagguHF+cxJr7UdCCxyScKwB5ZtXIdXb+0/Py9B7czM5lYLBKP+rHABsDWkRC+1oDQTatPcBAJ02jmdrfbi3OEWB1vwJCaVq10bCNBm+Oa3QqHWzHzj30mMXcTTTMd9OnQvHw2q5PfYz9MPBkBSgo6GUgtHnoqNdMqMU8t0IN8tbt9Uuu7PpZXJ6LvcYXHPbn+8EfvV4rldc06n8DkVuyhjeUU9TnH/eHAlpt377Pn9U7ABMYc49v1A6ahAUj3kWx2q9MFn43OZxPp5MHujj4eLWZize7QB6jZKB25D0Zf+JnpKF7VHLSb4GwIZjAsFSWP/wWz0B2rNvFYrdhoHw6P/SGB5QJ7+XRBD+M+O51evdFEI/cGA3fcT4ZCkpT0+jTiqsBcjmcYCard7mA6CgYIVDEBWYs/JZYH/0ENhYLLy8uY+b3eY8IzyAS+R9NAr8XCC4dDNVDKkZ3ORL74pZ+5fOUqFtvi4tLu3gFoM1Lk+OTk6tWLL1y/fuvm7VZLqJlCblgsdRfPBwvt2crAHNrJng3T1Ugr/rWZ6trazOZJ87kXVvAheBYEO8Zg0GoDZxVbVv7koFE/Agl0kue6aixiBHwe9fb9/bH17T/781/GBA2EQ9NnyWZStVruzgc/6HQGv757/8L5y1hU+MhvXrg+tzS3s78VDSSRBrvHW36/H9pRsVVtYiTC25FdAiKzkWilWW12ewgHFAtgGLqfaeHow2fiDdPrTM14w8u9qmxpyVpP6Y30kAZrDYWHG2gORkZ56Km0EVWxaHKhO24lOAi6MVJHg2570GktpuM9zVsa9Qm/NWs9FFu/21U0s9Sq55uDxQSsi7PBGv1hwPTLXjwcOAJiD4soMTbhFL6f4GmF/EksFjN0nrQHYSmTTDCD4N5+TcMf57MApgUnWsLj4gSKhZ4ckilSIgbSkVNMvT3yucSNpTCwTRPamQP/Uu71ZUJb8IYdadQaBf2+aCy2nyvsHRe2dn5QrzQQGX3roQJm1m1e3lj/+a99ZTYdH+oOSPGoWwi5SRio04dRFUErFooGDeWRA/WunTslXt8+LYz0sMtdFEr+Gf8oxF0OjM5Qa7QHHsuu5DWCA62mrxayQDuNlcb+MXHAYHZRIYaDzMPTkrzEEKej9AZ9AD4knn8mbox9UFPBTwK6Xq7V8fJWLy8tPTs7dOHJeNqnza33H3SaHf8GON0wlEoREfDJwHWe4KxRGtYISEAa8Y41Qcy05L2t4+JuaTrK0HIOj47Y9PjDRHeFMHHHhgkxW8FTwy6FDiGIg6Clmm84NkEfXcWHLFZsWzG1/ZOChiBTPeA38C3avZ4gZ6NciXioqmC1Tq5ivQ+8CBiH30rkCx0i/J6pUkFPIbPFfpB0WRU7z6sMIaSqKgi55OiVUOBxvrC3vekd9nQncU6BtdUb4SYPbewgQVV56v8Bcoo9IbYDWx6fXDCUewD9Q82Ru/CQVLQYBwDFDM4M0VX1dofVOhCKfyh5Q8JodcedatPuY0ewZYRhhuIR/HTBRjp7ljfffP7e3Qf1egMY4/NfeO25Nz4XDEgd6xhGImACUfxIJLS6dg7LBrY0YZt2uSYrTCRiDxmsajJmjxUIxWczy9aoDw6K91woHsCCgwxC9Gs6Y5MdLtQMHkm91qqUq5FY2BoFmKql5dCFtbkwqI8q396snhS6k6lV4qlgr89+UDcuLJ+cPHj77ZsvP/9cyIz0+51QPO64AzUon+bzp9uFqJ6cjiJ8lKf6ZKrVPn1d2H6fXniBLBaqhgMnwg9EOkdR/CgZ4zJAoLhcq20fVltDh/Atm2x9YQZk+slTmsnhzkGt1VhIBlI49+Da8YTS6YKCpGMxfxTNE5E07PTA7NwcAXNMHOQUyBPu3XmI5gwMvcKLMTPMbW5JrQpU16ZsslqE2wh5j5765alYQtZVp9ka95rtTstv6kTWoPyypmg8Hd/aI7XQa213OADOSuKekivQ7XZWVxdh81errVDYaHVG+5VcKhXDkB7ZzsSGYw+M8XhwOJmPTHKmeHpKYEa4mUyIrECS93QJhQGF+rESw9EoEBPgEjMh61quXLJAFHzBYCj+/NWXzy1d9GvhWFDLpICfTTyEXr/9zjvvnDu3Oju7iKqbTjnOcdiw370jf3IUGilBV2o548ba4goe/n5zFOxZR+UTM8TWB68SW55HlOyWV9I3FuYuzhl3blRufPCuspD2mAmiKDCydDMcCIaZ0+/++KN4PDUdxe8n7DqXu38TRCYaDfSaBe62VK17R95f+cpXZ1cu1TsDy68P5MEnNz+B99yZRBw05tTlYTEUPUNOhbD6cbZhSWKeCla4CCJ5MCLP9MyZmtm4+mLuwyeBcPLFV140lUPIKygDSTWgjAZT83fu7QQi8dnFSy4HQh2Nh1XcTd7A6Xt4917IBxPE7zcDp4UilqSCkRI0mo5Vr1n7hSYQgVc7AwG8oThqkKg0qpd/8QawXic+ljhL0y2MLhU249gmfAo/0KMAywVRMxKnVIGwA6ZEZJhtI07GxIQlejvRNKz45Do+OMCyg/yN+XlyclL3qd1OKxWPBfxks2Bx27A3ZK/WHfRA07CXj04r+znyQDQ9nJL84wCoqAYLa+v0tPjOO+9dOLeSjIT6E/aJdWEDcst0FJ+mTzCDIaoeu62jyp0Xngl5n++127DuJJ8X+pRq6F0H+1SySA5hL2o8uQePutdp++EIou4CAZwPx6t2DBVWrWHJaFCMQMGLnFwGu7BSyczOLa2uRI3o0e7+6d5hLAm4PRxlwnPnM3yuDDxpS3s3c91ad+PqyvmXLuSPjokynL++LodUIxJXTXkwahRrpmD/yiSqKPj15VJVuGKT6+g4n0llubdupxcAbRzbLC2BAkK7BLeG7R7o4Vjz9mBAQ0kR1qYXVy2sq5y7oGHEElF/PNyTq7Veg52GNYKa4QAK7tHTB2Ecoh7IWeFG4ltPRBtryf85puAvIp+IlTW9djwKw8Gnax2P7RV7V+4rnrYtl8pV4mpB1c0OeikXsE2QDtkrYtuMvRjX04tP5CJQKVSd6V2am2lU4493bgqeuQveDfYeQP+IyL7k6Q/bZDupOvk7g07vSNMjqkw4DOafwFZ1VCjsQ4AHNiRel+AMnYmAb/zqV9586/kHDx7h/7306mvBUIAIM4ofjN4MzGVm06qmJRIJv+GDrVQulp20uC1x9iCntVpGFMoe4WgvVBA4mZbdqTYq1foxhJRAcAEEbfosk309lSAAS44gLqtasVjj9UZt8N6Hh5Lieem5OWLLzXoXOiFzYSuK31Dq0AKcYDg21yzX66WGG3bZirEwdJJKvnQybJCIIVcK5aej/P/1fxT5BDUQSgYnRvMMF9LRxUz4aOsuEgU8cGtrB2sKVzCgjM4vz6Uzmc29Y0ENm1zFo9z+4cH8WmYxGdSDITWW1olKgABikwlvliWDk9mTybYwzGAkRqaBePxJPBlZhYrhWDXLJ/FgwO4W4SerJKfhLYMbtmu7tz+cjoIbvnxuLRX0H+0+QcVwY+w7PgNzhKgP4VbiJbqmKz4tlUigafg1oisSieB5EJ1lrpFK6BXDb/BKFz8RVhiW8VixoPcRt5xcxOLY2djTbJUxcQcXXr4VT8YPDo84KGwYjkAwHDo4OETNcMjgLEMSSabSX3jry89cfc70+ZPxJIYIe/7BvbvcIez21159GRlq6iYPNR1FN1Fy/sePcMV+kpblk8KobQXnrq8hf3WTTCX2jxLxE3IWQWfEKB7keKiVKtKosbswEz53bv3x/Q8RNWrIdnUv+08gBbIaScQJ4pMNMx1Fsr3f/c4P3QebC5nUbDSmdlGy9lHP+eGt2wup9Bur53D6Hx3sdO3B0tJSfesxo5GBFCKK63FNVR2O+hCdJ0JciHIsUcEGQCRCwCE89/RUnqkZMxxfXFnvW56F5bWE5Tb2D8lhcGzzxc/9wsLKC8tXDm7evhsNZE5LFVI0UDXYP8CkwI4gs3wUQYoEpgHGer2J+RAM+FmA0aC3d5xLRoxzc8HpI/3a//QvCMVCDyVYvba8cP3qRfYBSlhcwkgSog33QvNhRRIJ8MUB74BP8DwBPlW423ajhWvbJGXIAn+T3Hg8cm5tRWjWiY08HeWd9z9EnKHioYIcFE75YEaJhkN+UowgJnFnQCVeHdIRdGGs8kKtw1lna3vgWXR6KGE2WCgYevn5K91mjd12dFTf3d3t2+5htd8XmL64/H7D1jXLEXwPvGYJjDQdbnV75WYHj3HUszSckgZxOdJx1BZZNioGMUQiQDs0k9KERj/04FwE5+YVjiK2MpajAP4QvEzJ2ek0sHnAfz14MCEjZK5c2CgcFQrFaiagX7t6YT4zg/SzZWv74U75qJxeTp5/6VIwbvb7gxB4UDqGIUeqSXGnPL+e7tsQoLG9NIgIlfJpvVoxZHP6LNC72BWdZjMVDmFoQpjAgyByg10WUBUz5Ae0bDsq9AOCVUYoRtizValazUGagL8Dk40AA1weu5+rGwRBfRr6XwRISL8USTZnxwazkvE5lOwXHpSdgBPLScO+QBNjAvujoUFQdUKmW+0DqBNT6RIY8QaGur9hkd0WWVok/7MFk6YJXNvrwRq0QZ/RF4I4e7ajIdrhEIS4gvzjj4aDt298qB4CwrFH+KqHQ3EokGQ8jIaDTgMtRrRGcPdJebTHfdn1Q4/Qw0GY/XKPABIeF86XLpGgxxBPPTPsPpgRiVRMR/YbAQ4VLDgkFBg6lmmn659C+aZhDk1/w9dutk/CkQhWOZnPQzLyBv14IgLgbLlDVVDZ7c6gAjDc6Q/rkJX8/rN1gYDDoJNQKh5/o21v7R1X6iCEzJav2bH7LevxVrXZAYt0SfRjb0MmIC+KuwZk07VIU8mOpUA8NQvDSnxU2BuJNCPBbDgUUf1nPtN0rD/xVfiDf+Il/EUBlJF67ehez1w8cml9UfMMThxY4BZI6dApKUYyaJqXl9JLs6njcv0kX+SRpx9zfEQYtH/n+GRh+aVr117SklmCyC0ywQesNOEwa4Kli5zCZrN1eropCBejYTgcQQ0QNAXDZOC4ITXabcghQc3Sxw2SJkSOjGN/8M4701EuzKYMv5mZm0dd9Zt5iMlsRaGMwDw1OT6bHdu+XBUc3u11+0gdgiKgTIGAORx2draPsAMQa0BtLIkIFuO8WBiB+DGyZ0Q+wBloRsCPUVlyuNHoUQ4M2A/yCvcLjfXnf/UvvfDCdTIacVB+8zd/i8B+diZNXuxzzz73xhuvpxJpgqSYQPFEvFwubm1tEk0EWLt//97y8lK5XOKups9SqQxyp9y7OZ80EzHo8jCKMonMzNb2Lqw+OMvoY4IGxKqFuuUfjwwmik0bjHjfePH8tnn8u47V7ncCE3bMhCYptXvjVg/bjFTQs1im1bKL+8dWtV2u9vfd/TcW0imerKOctBv/4lu/033pxedfeEFQGLa2l1dXZlLp6sFOwGeeX1gUwGi3Mxr2MQWZKuHHA1iD3Dm4MiIsgq8wUfPiac7UDAyg0+Lja89f94dNpX0CGI7i3ztuvx5d9phzQX9PB9/VTAQ1Q87OZB/t7hIQJkd0ae7c+vmLUBgDochpoYQWi0RjzVZdWAS46u3eznGbpMjpxPUR7f0BBJt2EwnrdS6ch9EJm9KnGcytCLZIUjiWROhwtgGOCKhxxpC4bIuDw72TUgnOH4iqI+JcRGR7c/Pphfk5v8ZTCEUzHeXO9p5pBCEHDe1eOBrH7QDdK3ew+aWg7ofHQ6xXIRXd6/d11ZHVwmvmzxmTYCEZwqP+cJ4U9mgGNVqrl+MR/YVnLuXyJ82+spmrYnNPR/GqshEEze9goeKUkYYvCyB6JCm2MFnZoKOeQcYFTp8XfI0wNgg/pMMxYgUnFzEEI0C1FcGn8ox1zDmianzHA0+tuMkwOlJb+KETk0WWsFhXL23cfPujzZOTK69fGqqu2hzHXb3t4cyfS5xLqzxTr5tcjGhhHaMhZii7dwq5o9Lr568I/oHwHQKW0yR2hRSHmzF9lkq1UcrtP3NxHUOPmYXAxc1EwkGPRGGCIZBdc+ypevyKCblRjmXSarvaGw3alZo6cPougXJvozWod4blZncuonV6XaBErFJsGTihYjUnF6cQc0BAIeKRxUOy4CwbOoLkM9vr63i1Unuge/091dSjwdBCdnF5MTt/UYnFe+++N6wMisfHJ49uFdKRlhryFisRCNY468gDnuSp4XRhfYNcd2QT3owo/OD11JstrBifqnWHdqXVCfsjwbAfMU240tODt01ciEwy1CGzIQIxQI42zAMVbNIIkO2Eq4QUESvACp3NGFRXXCJDx2phHCJ6EkERSCvJZDwQZDMLJYsYwkZBJOG+YBQL7cpOxtobj9vtjj9iYK+RB06eA76FSN+C7wp1sFsPds/Uv42/LbiGQouBnn7w7n3yZpsNopYjqkJgmwC+7+3BAwdV00jG9BnIU6XbGYNbtFu9EOUv9MRxsRMIthNJTzQeAWm4/NzLYvJR7p+qEWHgna0RKD+/PLsmyzP9Be9Fk6PPyUKL+bXZVHQ1m4wEfdViBUyXiSSV1eq1QoH4TCqSDBkYoAdHhR77XSTOiYssb+RRdumyPHe+6wvbfYt4PocxGiMUP0TqiZiygFGV733nu+++/Q6Uc3hZr7362sWLF99/78MuQsyVPnf9SnZhzmtChPDWQdGssdbrDJiNM5npubA8t3tSKFbqeiCqK+ClI2pYSHAKZW9saf6Fz3+p5WiPdw4ES97Eb/CSQQlt6ujoAHDr+eefU70GeZeFfM7udFvtpuNpiw2E6+Z1UplwOhPc+eCYZxEoleIhNqb6I/lChcfXkY26ubq6/MUvfgkCWSqVjkair7766je+8Y233/5Js9nAwU6nZonYpeF8hyIIA7ILKe7Av3xeq9m4ceMjIgXHx4dsETFfHo8RIFgHm8YgijwkpVv1ZVILGErNVmcmkUbdkoHkhYEv4tPCbCOITiyC0FxU9iWjiWq0g/Em5Iqw48WhA+nE2Wi1YcgJZsF0FN+488ySsemGN/eaxMJboDCK2SyPyJrAq7/x6MFCKpvRzU52DmS20a6bXi0TiV1cWg74tMf378K/ixp+jJiTcpEkOQEeekH/sTJFvAq5PR3lTM1AwwSIRCGpGsYUhj/+uR3wDv/5//hP/9Sf+4/VbkHzsQPt5ZXZUu100OlmUgm4v2ydlbW11bX15u1bXaDQLvUtxpjSkUjYcdsYTCDjijzM5c9iAN/4M7+EsUe2GBLGwGwee8A32Z+AEV7KIXgVHFMXFSisNZQRyDwiROgeQCTC+sTqo5EIuI2uGI1qM3dysLa8xj5AP024BNMnAmDhmMuwFYkgzc2vYuWVCwXo9ul0ypeY6zaqY3kcjqZ9vihU0p7d0v0hh8QoiXQVZJHCp7/4HIbazGDU3d/Vd588euX6lfn5maN7hzi/QtRMLlLpNR1yFDCebkuQ4keAuHo4lvYHOS/CGoKExKEh0C04f+Jic6NmHIEkoZMIkgAeYksDAYp8CQfvnmuMWME8OTvtacU86A0EEZ6gIrnMPmVufSl/cFiojH0zRtVupZpO0AlHjcDaW1+MzcSafZypGulo2qkz7o47Ro+8+7VnN/REsFqt9/AJeEiFlFWMPKlDqs3k+v4P35mJ+ckVqJRKeNkL8ymS2MXWHHtrrZKteryJmfmZa73m8HR33+5aQdJj/EarrY+N4ICAkkV4uflge5+ESiEMzhxTFKuNXfipmtElBw4sQCtbT4h4cVwnGTf86JVbILuW6z935fwXfjY+OydjsIVDzLXtmFVrsPLiy28srD388KN/dOPD9w8Og8Hw55cvuEf7TvUEBcMeYQ9MnyWbybC/Ecz8wzIINMarwxIANofZ1SVRjxwUr1SqVeD6yj7NHpDaRdSE8jw9lfV0YQT1hHR0XHYk6XHilrlVVs8lp+wsbI7cFxm1khcMkSACHB/Uh4FLZ8Qi0aBM+hHr6XqajSYZ4xCTfGyyMAESkeCGxLFG41ajA2MCCwzDgnkwTIiCEu7QYNTJl46mz1I/KfpTcSMsPDE4C2tLKXusP96s1au52zcKmew5QxdsK/baJOUQS1xw8/EDYPn12vVIKKKbRj1f7tTbb3zuQiKJNhUcDTFTZ7MlxmGjTn/6VNlMRxe78an6YQbwZYi4JPzqTMzIhLVogBgodq8nHk8Q+IFX3elZER8ME0Ko3WK9U2n3IbSBQ00/jYUEI3vmhefDoRC6Vw0G2RnOyDk5OWXqkL9Cm3qVYrH49ttvv3T9xeWV1WqtlsmkU+nE6194E3ML9Uw0zbGT3oV19LLX7jsnh/0if26Va83pKBimJHju7DxBOC4konrW76hR7MVg2F2+8mJ8/oLS7a5AB5A8mXiWjBMBUBMr7Q+o8ERskogiZg9yEPfz4HDn5HDbAc9ot48K1WqpnZmb8XiEmoHjSyKqPxCEaYlfkk4nLl++rJML4zc31i/CYcOn8ek+FmJxcfEb3/hzGB2NOi5aAd+IrUq0Qdcp8CDy+zjpHAVioh+8+84nH32YTCQR3NNnId+354aheEdICxtQySkWScxjqIHEUkCrlCvFAhEWCKkiEi0QKgrpeBS2EcYKdlW/T16AD6Yw0kjYSBxMYC4qlngltt+IPOnJ1bebi8upmtTK+Yz+Y+ugVpdMbkxK6YErc+nO/mbu4w/JW8mur63ML2wdHJS6TfbLzv5OkixOxyIJcG5GoIWX07PkUfzkzj2UGbOKWYLJBpQyHeVMApKi0usQregDebSrGJfECprZiLL9eOc0t+PpnR7mDp7NvDi7mJkppbs7hzFfJBhJ7O0dZGdmoaZjbRfLVR6EA9djzWC1sRgBv2cc06T+qFqYDiZiRUheUk81YhO+PsxWyznYw5QwFpYX949Pf/87P7BIPwRU15Fj4BshbOpnn72aTERX52aF+yvJ+AS4CPAZZ7KRmdkse7TXs4TqOpPMHtUXSKZmYP5WKrlut40kw/wLJzOzy2vBcDSUIOGg7oy9sKJA1Xrk7VsYFNRw8zKm6o5SoVAyGqJqTjKaJsZYPTo63D3IxBLN4odqLDlCokwuNokijXRFbZRqtU6+nM9Fg/HLF6/ATyWMj8zES+NhMWnFfyKoLnL/BDYmIiK8CLNIRNonNF6kFoR7H7tf4BLY1cJfFxcCAqMPfdWst8hST81nZEO//MozVwarCnBxpZnWyP2QPPVOYW9HUWZDsqk4OpafVifRx6yc1tcCQdilg/YAVLrVrQ5dK0My2gSmnkknNx8eMMqDo8rswgL4Esmm/tVl2LftVh3kmr1ZGShk0UQimUAg1KseeJXB7Vt3qtXy0mwcugmuOqTiNsTOPoaoQfZ8od2NYDOwFhAjKMMgtveZaBbhGmaCfwVaJqxEtBBqiFMiqg6srCeuXvUtrZS84ftbuVKx1CeRp9Oo1XvkM73w8guv/udvBt6Qb7788m//5DuVVj4VjL24sEblFdnqUFAL00LMF9JQhI4ZgrMkqNs2AiUz9+i+QUp4IpHMphxINwIkAVIdAY+wIPhdIZAsPoK3s8HYUBTCCJrhcaM/snDtAiwKD0JaXOdpeR4KxAjWAUx3otUCX+bE2Yl4cjCSO52WV3MI+7O6iBAQX5JBgWQzM9lCoYCfhTRFoZKoxIiICJgICjUUArEQXKR2Ff0EWj19lhYQtO5Di5GnkD88CRk4+Cp0wRH17BiRlAOPJxKZ63Rr7WZeuKd4hp4x2R6RAAkf5eLpo1AUy8wXT69juz8lR0w/+6e/cjNiTyJhxbYTdt30tz/1P8kDvTgV8p9biHUrh7c+uBl482ej0TBIUSyZ7jblkHCj7W6n3SwejsezlQ6gAaFIFvrMNge2SqRnSSUkrI5SYS+wSpVisVIqsuPXzq15ibDLvls37sDtSGfn3nnvw3t37n31q1/tWW6uWOIGuUUeEYsTZRAnW8T0Rv3h3HAEp8b7NGyORR8NmlY0FNa8bVZP09efecmy+sGAL5pdhADWbdRhjUK6tHpdsFAxqK4TdcAYxL/B9cQ2AlHUVDMYDsTCxtGDOw1rlMlm693+3nFxOi/pdHouHUfzFWvtq/Hkiy++wC7/6MMb589fjEYJycFygBAPI55diUEl8u2mVDRewWVpNoT6xHQBTyPWCdohzKTxuFgoQp6CCT0dpdmSizU0O6S1WI91T86FIjFmjYJC6CaYqwSASY/DBAGGmQgaL3whFHGv1cgdn1AEgLMWoj6Hz4NAYFshbQIhLRhQBn0XTuV0lHx37DUW11a1irlVsutajnp7+qqqkeaFX7wuyb5G4X79JKnJn3vj8zPJbLffz5fyj3eeGGjXxaVepRozQ46/uRZLDn3yfUWqAgyzp21ogjY27XSUM6GJ7ANOyybiyPcf3tuN2uNzMcS9o3kH5dLBeFhfWF1W0NehaCI9V611mi3SETzJZHKyb7CgMAiAnYVThqtL4kE8kcJl06SByEF2z0CA3/nW90CvgTkDmhkMhZbOzYExxLMLsURK9+uNx4cPHh+DmIIyguAH/frawuIrLz4XJ9OEmmqAWnwwoQ0CM45lmHok4mdhKqRt+g1SH0zz7JEikQTu8HBIgrpMsK7V6uBvUlzx8KRItQ3QXrwOanYQCSKm6/GbBtwfUdVpDBFLda25uN8koaXVsHsdTt7y8trjzb319Q1wpPzpCdS06cShOZAP5LKS61suFxr1k617H2/e/WBt7eLS2gWmaWKcggQIjcG24Bjjn/FXWB7CqMRIZnuJQy0uPlP4OpPvuDEMrLNRTF9mLs2zIMXQr/VCObU0H43H/DXv8Ph0VgtZMrwia2YGPuvYOi6VoQtT9AUNjw0MECBrcAEq1ebooOnGdJghlBHyELgbu0sbJLbNTtVMOpHw6Wax0kTPBSJhggeCSGZo9XZp6HoziRnOYPPkaFTLRwzl/NrqXQKe2TlullwSNWD2y5VWn1XnRxvFato2+x/FSawOW1uAxpPL61GguwgXDsgBA9wjN0hvgsYr6eHzl63F1Y/LzcbBh2PNeLi3d7S3Y7pOMhrMV2tDSXvj85+H62f4E5/7U7/0waNHB8e7D3Mw9EKSLxwcDqKQ4J6qGcqjMZUsnKC9sKgelySfpbml/YMtbiC1EMangu5FRY1yrQOKIO7UC+cepWCSw0NQAyELq1uG+G1IrU7flI2+BWvZAlD9VAQAmeL8CzOSoIJXKR+fOF0rO798WKjl8ycd3CGPBCCDMwV+lU3PxZPJkccivkZ6U7ffRcdmtQxwhjSm+A4gri/kj89kQAKoqKQkYonpjA1AffJVuzsslGvlXL5Ra8o+ak+Unr32iuUmyKIdDcBslVj0HNUV+70KmHYkTCmZRCwZ77R2rFHBHpA3ahYKubv3usSco+EEVC7NR+KxsHmnF348iAuWjwBsFTkgCF0j6vsBYPECZ4QECERhMhRMhM10wn9Q91QrpePj/XD4EsYRiTxBE6YhyV+e48P87Vv3cvcez126ThiMfS529uRi1yMuiMN78QT4cAQzOlZVzXgUBQa6DG0G+6NRb6IzqOCyv7ffrNU4LbgLGF6VSp3wD4RtYqCpeDSRCicigWHf+6RpJwGg4khtcQFcBxRPZH4W/f79u/caQ8/PLZ7Lzi+GQwakstzWo+IpRA9fVNdP83uKaS5fuIRwoMIhGQ6wo9nS7U6be8N+8kjGytp5T28Aw+n87AylnL75B9+fjgIqu76+jhljhAcb5y+mUvHNza1JLTpymwSIi5wCL8XiQfoLCxIpSbWkgA16RmCuWizH4uHBQH3//fcwShCazVoVwRucy0Qi0e3t3ekoxA8HTihASlR8sZo4rxWbFLQ4Kpb3T6uxaJqalj7TNkBUdErWUOBLZ7s3yTfXdJyRTz75mEqg4PbES9A9WKjcEiHA/NFJcX2BiligDtNR6o1W1C8yuC6nE6EhSFD5tN2/GEl/cuPxvTvHLxhaYD5Z7VRKj+8nEtGLG+fTkfD52AtywykWGpnlJcbVpMDVn3mR7K/WnbuPhlID84kjjuXOYX+qzM7UDNsoTIw1SNzAbrn+Sl1KBL3EMR3ZOjg9SEfDi2sXgZg+vvn4JF8PBqJEfR/uHLGs7EWES6fbj8RipKHmKd4QDCM/TROZ5vNYFJBtpFPB6SN9cvsB9XxGwxaMzpdevn54clzNey5fukQhEwA41Nqzz12FrkOq2rmV5UsXNmYIk5oGNI5jqgHX6/lKGdO+0RBLRdgfpgAaGqOBpJDLnkthYgmTi30DpxN1D1pChobXGwC+1HzBRCJLMgPlpMJYMWDlmLyw8GyqTwYEidUZcbrGw06Y3W5TXZPHwoocYdUcFqqPdr9H9qs1FNVLpqPwFQFKoO/8xvm1C7O9duHhrVu3P/nwnbcPHz96sH7h2rmNC5FoBCeJ3YbQEbiL+AqAij4RBj4AL4EF5OCZ0civ2ebEzWWk3tkm0CN+rYI4FSUR2fr10wJIKW6U3Rpa9V4JUqnuCxFEoKhIECzCJmOALQUa1vFS0InqB6YWj86HY4Tud57kounUUFWoXIkepyAmBWGnz/LGlQ0itzfvPLm4vpAWqSIOkQDKLeuBYCYYisUSmGat0yOn2wzHCWHOJ2bSQXifLap3aJwZwRmdhP0pNwAQgggOBPT+QNQ9ZncT/ZiOgppFYKFxscNF7paEhgQ99KorK7Vg+OH9B416G4PDjobhspGtDWfPY0TVsP/8pWsvffHzA4KxHffqc6+8+cWv/sb/53+m0OC9nc2gV02Cb41t4ymc1cJKxYRE3bE7YXwQQgv5X3npJfKGKtXSg1t7gag2Ox8E6aSeIREyoYwpKcNeZeaGODSUlGZV3E6fYifhJoXP4D5Y5NyJpBR2xtmzyNSOgTnNeYKbrPbyjX69u37uGfi04YjUpsyfJMeicThgvdxppXiaSaWB7YhA2XY/GovCUMFahJWFH8YWZRZEIRAzSkgKxNr0B6ajYPwRAe20u6fHhwTE4X+SA7U26+mPA9uHuDku1abb7SdeJQgwgMrvDyxeyRdPPZucY9IwUZkw7qziaffkSIlGoA7mrz03vP7yhcnnn+07TKWJHwN47xiyE1JGqYA6O5eVNZhEPmGKsVMnORDDfrdZLoo11XwHh7sLizMiQdYwRXDMC4lDggeUncm2PA0mSiYc7fFSOm/6LJyU5ZVlrHBQB/aFgIpkd8FwQ1IbZd13w10PVVtd/IbNJ084Jt12G7MLY7/dwPpvbW7usAmB5iC4d5PhtQDVW+2eQ7lFnJlGrXbmZ4CWEvPgaJ7Walul44Gj1judlDznqHq1mM8dbI+7DT0a71ZrrWpRs0I8MrE1D14tNogXx51SmjrjwpdTtACgvWcdupSCFxxKJU8bjQdb3+ZxeA8nFarCuY1La+dW260mEX62OagpBxiOK6AyYop6uOLUCuAc3epHtTcaNaHAoHT2ujB5Dw8PMFKZDpEoOh6nUgIxQ616qLbn8ZSKTq43i7tS2FIClX4sSuWKSH/Yff3554hN+H2RVlOhFgYEQw4A9wMvF1pMq+t2x+Q+oC92kTy9rhvFFnLZGDB8tQ8/fLK/U6BmVShyJi1Btpq1SjqmZb3h+cWVj6utuaXMxupLH71/+/6jJ2Nyv4CDFmIEYW/fvdFplJ65fMkzf25tYzF5okGnS57boMysKLX+ez/p/da3zdjYmyUMyQES1VaAB6arf6ZmWH1KiMOFGg+G2bnlT04PGpLfVbqUQaF4o6oHl9YuBsLxf/Zr/zMFR1v9GmUz2H6ZqDqoHXZ9vMe/+WS7WCxTdzESEUAKxRXVUVfpnSb9VhiezuQq5w5j0ejsXOri1XNETR/e+Tit61iNpUoe6Doe0n/+K58DZKKkAZX+arXq/uF2E2+kSaWfXqPbrbWaTAruJ7FTtmk4JIGBRlNBHyrNMKGpT0ehwhCg0MS86quyTvqYhFbRibiyPVhlcBJOn0BWWP9et8Mp5ywB8Pea1ZOD7ZoqUXgqTehfJ2cILoTPa4bKudP5bDIIpE5Uc3KxLUSeOZmlAstTI/H5199Mra0tv/uTH+/vn3RvD6lyceXqM/Pz8wwpvDz+gOUWzr9QcEJC8ZdMOCgZ5xy3GRSG/4lXhPqZjoIPLVxFaMUU73Vcr2n0CImEA95Q8NU3P//RrVvvfXL7yvq5dDTYrnbCkfBcOtvvwo6llPiIJPtitWAGtcW1DWlgL4/HB7WSNzTTHYwOtnf3tzazS69NR1mOhfKliijv6sEBouqmr+fpAy0GYhH8IuaOJOPowly1CLvc7yU06A/gXIWDqGe5q2vZ2dlm3yIMQMYoKYKk7s7ySqt3dCpicjzodBTycYBqmX3+D1NsFAjF0huDwbiRzNzcP0KPxmKhRDyUw5WwySkJyX49sbD01vPXv/iVrydnF3Ee4BMPhj0t7L9y6Wph51G13+lGY5cvP5/s9+r3P56OgjvNsiLMmHYyMBCTVPwMR8y3vvjG5uajyntVq+OEfDHHacOJAWshYACOIEp2KohvotG4mYhAGKhdMpGH1FztVDwimOUlZg+wOR0FDQYmMtlD8AdkihQ02g2qBUVjKcA4qGdAx5VKhQj//MJiy1eqVwvJhUTE1GBKLs3MEP6plSsHO+7KuWUVMY1/NR42WrUA6FpYYHTTi5pBEVM62j65dfMTag6uZ2bWLq7DqvjN734CEaDZOinlN3vdFo9KUhRjsUV4ajJ3YWnh3bLH/EFe93bbBfzwSGQWvHDQO15ZnUumg2y36UWhXMUzUJxRzPD2C1uFVmXphWepSQhjGHhK7FIOG743Ocrk94g6fBU+mZoolXKZEtwiWgkwCqUSw8FnXn72+jiSz1U7Iimd6+mz8DGJRCSdIS+15ZEiE7xwFKwdGoefWJLbv5YcaQgNafPJjvCARcgKEeU9rZSA58sVMpQaMIWRXtTtalNKot6okLYSSgCxeEdSeVKfn9EMxU8JuZ7Hk+u2x6BD9R6e3OrqCoJQwFOuFQsToHa69QbVj6PBDHEOEaxwcZiE281+BoQHj0TrKzoZVq4ZilOJ8GjnaNmnLiykpjMGkH3n0WO81XPra5Cp0H5YxgSoTgs58CuOBqlT6A+MMOHQQDJnZ1C/2qfhzGFXwh3Aze4QpAC3pd4l9g40aGLbnR5EAsMA+2kyULUwzjf8lCIw8u2vLYVNDcMl7IFfFsSLlfznL/zo7umjnZZP6pFMIfvC7GY4KYbbC2dXlldSD4uF5aXZtgf6tImjCazCJqcOlXXSxCQ1hTIWVygRZS1ZY00BiUxdfil1t1EvW84bX36z3a1XTmvOScEfVGLpJAmZkCNwHdxqdTaemksF7HxJuo9N0KInxfb7j9/zDvIUHQauxnUaY2UIAvD0OlMzWHOhaIaSKT6vb3154ZObwZa6Npba6Vn10eMPX/38X/7g/Q+73ZY1qpQKx5iJFND1eqyoXJ81yMvapiR+OhXFMyP+P4Dzq8Lz61iDk5TanwEHt4Vy5jrZegQZ5es/+x9+5Stf/KMffi9FTo5JnX5Jl8bpcAimOTFUYCb0AbdZeHJyVCqC33h1DksspZucHT6ErALWjn8pTgdrFSi+0+2B8ULqmQxC+e4QYT1IWZFQCsGOuUoygvASgNJF6Fn8A4YtkHi7T1uOVrXCLEC27TTL+dPTNEQQfwL6IFwENjoez+zc/Ma5lWsXV6CT3r7/eDrK5OwRJMI9AKNBaxGV1M6tXyXmls//FuuzPWwWT56snjt/4dLVVDqL70sJSmTThBwlJKH4HEEWEN8Impw4zLwgMGsRuZlcdEchIcmiGhrh9hAM/iSTDBZx0qyeM4MvXnnu5q1H8HkMI6zDqpIlcn0QrItLS3wwO3u+082fFnceP1q/9Oxq7FLtI9I6exgf1VYzHE2srK5ORwlIbjYYKLaGPXKgCckId8up1ZsKzCHqPulGu1YX1AHZoBqhL2K5ZEqLAuYi+zIVxVWSOXhkkharDfKaTH8WfR6KJHIVIivNRFCbjoJ6PYv4EwPXfTUoiWtrML53qu30hSvHh1uiS5FEzXXr0uXLX/nKV86tLM3OzsVSGTzmCjFeDuqo/7/883/27jd/+0pqidTxujW+cOHy61/6qrdYfO/hPVKSGAiIDnUAfKQTf1ZR8Ha9Xi2VTi5eWJ9dynzN/yWIhSD1rhSkwCP53vRNgAsMcIWSR3mwT0BPUB2icDs5T2CMjifi9XvB+yybPL7ps8DxwV6jbKUkahXJYTN+Oi5Wq83I6mKrTcZfRRCZqMHV7lAuJTCbvfXxO5KXoqXpKnUsjg6C0XC1UPjgx9/buLD+6ptvUdK0P7ApkwJ0TAFTwOHpKN1mp57Pk+REZqsgS6fTOECHuUKpwj4qxUNycu0aLkc+32T7DAbVvd0b4HpYz4Rhstl1cvKePL6JWiL/fX7+WiQwL5k2DkG13E5lQhg201HwPHzjwYWl9GLcbOgU8oL9bFQKsH4gEOlmIAzXBVMDawjbnEgTJj9RblhNhOtFatSkzE+jRTqiuHHgmNN6z+uPcN4Eb/KpnsF8IXJOMnyn3xKgMaYeWx+fdFAjP1DU6MbDlVy0F4Q9HPFYKtlrUXZDgrjYIbeU4A/0Ps3XGw3JMz4VPB9SrKvUDYayrQjBIC6yXPAxm8NOyeoFU2GUY6NZ6fc6BIlFpsSFiwr8yEqzP+hRDyIRJ3fCAGuCmiv+mHuFQoHW5Na4eY4oBxKyvunPH24PrFbDaYu3QQPI5bB8f2FhkdVq1huU56jVG1RovX331g9/9Ee/9Is/D/v0+PiYSA8UgCDtHkDXJ+51MV8gbfON11/BeuMNZPVx4kZQaERRGTa4wk2Gg+GDvHDOAK5ntRZkkpnLl9Ix83vf/7FnkDk6yhFJwqfBGPvSS1/aPnlSahFol22KYcl2xNtMhMb0YwAfh/UV81OYRYuHjL4kB+iEQZTHZ6u2hgsfJPg+uVpW79LKYu3ouDXwDOVAJBA+F84c5PJ60vfiz75m79UCurco9WrNLvWscPZyBwdz2Iq17u6Dw8Jhvu+QO6H2KoMdnzb4/HODQa1RORbUQxaHvI0/Bswng/HYxK4I3eCU6nCTI+Gj48Lr1y8NOmMzWM6f5Ha2togpMfndVjMYzzabPTKQN9Yv37i7eWvz4PU3vwpFbW9npwkx2wP5srOYhvxqxGJBqh5S4mL6SINe98ozl7/wxS/EI/HXXvocRnxQBfMhDxWZQEFHAONRs14NeX0Ylysbl1Nz67V6KxiJINLAbXFh8AgQhJ1uB5ALMvFxPo9WswQXy8FRnY5CSY+gKEvvJaEPpiBCcG19A8Aa7FXAFiAypIGNwHlxFFpQ/gEigAcjkZihJRF0kQAVY01BlyZxbkjdMFCcEKSk3PEhsZRLG+emo2Aw4wJOInGiHxIGHVKKEzI3zzZYulHMEy4olxrlyunjxzDi11ZXz6XTs1Ck6OHDznJGlDqe1OacuDACPBMXj8npE/GL6SjACCbB93iA2oGgOxXKfydirdM8RYc+fLT52jPXf/HP/GLu8ECw74Lwj6lxAvuWwlEFdKsIG1BFfC7ZrHYrhdxOs5XNLOUKB25AW9hYOHi0X8hVpqNQvDdKDTIjgoZFGeAthiPqYSHf7HY3QqFH9+6T1Hfp3HlZDXUon7L1EIMxYEbAypn29nC4fVraPzwq1Kit78imaH+EbMEQJu38uFTRKEQxuZAqHFxCuEiRui9wH0rrw22DiEE8A7Z0mC9AGtDrjW69+5//H3/pz/3qr2ITEkSBogGqDjsNYuK3f+ubH/7Lf21USEb2ZtNI7WdfeuOtVCqr+UO+cNJTrTMOZ55SvoBhSH9NxNYJxgV7w3Y8kzyfWN+88yCTSD7ZerK0TMBpnG/uIdyIsqBZxALAGtUIngNj4HZxKoeqHoCooI8l8rRqpRJ9OM6eBZTFJ5qJOV0CDFIqEFnduEjwxhhZsXgsSCq5YZTLFbgZGMgCvJLdk6NDKkpQfsMe9hPhhX7DBAV5fPdhuz08f/UCdX3QaunZDLUVhIybXIFYvKOZIarlJrZ9HmoLmftHuX/1e7/jSEup1EIm6YJqZufXorE8GuH0ZMsnP5uIE4EJUXDy2rXr5AV+9NF7RB64gVBwZXZ22WdgOWjFQmltIy18tsll2u2L87HXriw0TvbhLVCV06IObN+iAxJSGPQbYY3eEo3uEFMCD1CCwUC91cwXCuwaenhh3Dze2ocSsnLxKhW3WHhANBEZQ3SfbWTPhYuL7Hd8HiwsysZBgMS1p16GkV6l2IPg5XKERHM/Trko3vqlL755tJQjxnh0fHq4f0x7G5sMCsLd3XZLD5zKebxPw1DOkc1Aowz/mWL2+PROv31QOWm7PYUS8X611CmDISPzkpm5WCRUP9rTnCNfrUQtEWgopFDjSLo2Co3kOyry8TmCPSbYK0B7OCZAQqSBeW253zOfOoDlchUFg86lgCageCgSJSsegYBC/P73v3/p4vrzzz17CCJ2cMBZmJvJEnfhPGLbPnnypFFvvPji8wkjcePGjfv3HwjniTCVMI+EViOYCZtpui7v3nftoODE+zVPo9Ekpw8DvlYqr80vHMH4KpZfe+Hlly4E/uBjK2bas9rek95iT/E3+t1QZ9CghorHd1y11y/4Z5JmESVBam9A90Sirm0SnBOW7eS6f7gLr/7y4vJxvlpqdJ8Npm2lG1hbeL9xFJmPLyxsXJyff5Db29yB9b3rX5xZzM75k5lax3m7dFrTHD2ehZdez4wo3BsNhO7kt8rDLhi6qOThocza2Shn3syYFBO6APWdHrRNRSYZZevhdrM3DvgX5lc9h1uHJ6f5V165Di8rODMbm1k+qm32h2ONWozJ+WeDc8z7weFdck4azQ6BvrCbXwxA2VJUqQWPy/90r62cf+bP/e//Kojqk50i1rboeuJKtQbHGkJBH6CaTlMgm0rROi2xD6zxgE52/r3t3P7REcBXLBFH5FBtu1qpsOMxOQGFWZXIxAikIcJ04rB6CFHu1ivEVyLRKN2HRONDitC7DsA9CZbkBOPGgsujXXT+XqXwMPX7xrBX0BzC0RUFKlSyQQW1DbTeGuVgA3cJTvoy2bnpKJSC4F9R245mWwLsQkwJcwhDHi9L2EFAY8hssv7qpduVwsO7N0QyTmY+k13S9XA8nk2mM6gp7gr3hOMnQDP+CDIaDufTDU1oj4ynKJA/LSlGg9JJLkoNJattZFM11Xn/7u2vfeFn3UH/aHeHJEH45TOZBGKl0e5gzqNBi0wCxZlppIEnOuz95Pb2Qa8diKjhuDG3MZdIp6fPYmo68UGIXZIc9wVDWJaUyB8MreOd3JWL12hWlggFiSvn9o5v3b0XTkerpWo6OVMhb75cFQ1XTkr9HpnJBmI67A/B+QiF/Tjr0URy5Gw2yRicXrg/1JciqhuKZK+/fL9YbRfao+bIo3WoIjOiE4uixsNRNWoCmuYLTehTOMfMMWqeCg7MbSYze+XSM716PbV8LrF+PpSMISqJ2RLTGEej00FoQEP3OQqIxaN00Jlj6ky/mkgnNnfuZ2ZT8RQ8OP+Dx4+ITZPHp/REXR+OAnfGJvVSMRAJL0ICPeLylI0j17nf6papEQEMOcQoPJOa+JsCggXDHPQhQUiaPxEINAC+2nUC+KQnU3YX4538rXabIiTj1Ozs0c5j5DvRDih/o34XvsS5pZV4pAnz4nBzDw3PCjuDUYBjATYyuYwopU7HjVoD+hGunu737+dOHu9sz85oun65b1X2H99+tL3Nk87NzRFA+drXv5bMRBrNHq47Bg18mZ/98tewhQASw6EYfMDtncNcDgpa6Mq11XgydDaK1yUFplbK37l1K3dSPXc1Gp9Jk1RC1ZYxFRPojupgmIJsEUfjfDBPTILE0mCulYrFJ48en+aKJ4V6rW+n1q6KcjgC/RV+ObM6sZrEOLNpasNQWGxIEXgK8vA6Mr3pn6kuJ1QRTKPyBta8Cz5BiCIGPBSgdD9nwnrz3Evn5hM0lNWNuG3GRh54ZSpZoDGpz+rkbPPWu38ET3z6LPgMJ9XSQeV0ILoIibs4OD58svtkcW4pEAmp/lggZcmQifP+0vEuuDKNsjjC1HjyBqhEQHjDwj7gMcXBhtZcq9aLRbfdYEWDqtaZNLVkIDQD/hygKE1iLp7fQOmCL6IvOPL5Qn5newf5+Xu/9y0EwN7+3ovPP4+mobgLwmZ7e6fRgN9eR48S2sQ7FOCm2IGceEFPxXDhmj5Lzwld2NiYyYYADm5vVb3ULtC9r7z4bDoa3dx0oMKCmR4dc5vUtxiTqIst5I/q6sgbcgbBTnNxJiz1YgHDXczK6SikX5HAS7l/LCoICkTTp6N8UDwgFLGcXDy/sPTB7RuPjw5SC9lRu/3y5efv7G89PjheDy6vpeYSeqI8M1Mq5gB4YonFZsS2XrlmjpzlYIp2vyV5BD/m9tajE2qSY6KNHFSZjuKcUJsZ6EzNtKt5evcK/tUYprubiMW35L0SZQeVcTiQOX85vHd4DAO40eqd41pePcw3Hz68X63waYFoIJh7uFmotgS+pwcJ7SxKnoUg9UPx0JlDdeoSMtgv/fk/H83M3X2Qw+rneMObZutiuSOeWTnmerJb8MLHlWoRRAsLE+4/u7lWFSWbSIsdWiSzE1wmRAw/nsqqlNVS4E2w9AjT6cQ16tX8yanpN89fvEJImQIeEPlpMUQEsefSYAaetI/kPaAVHhUzDW9LBL3JXxHhEs4k7CCMC40SEkR9q/T6qVZYe9BhdJ4vGJ+OIqLZ3DcTKXhNAuniXxyUfqddKOTz+UKrKdA9XGaAEHKa2IUn+dz2wd5g8EMSYOKJmStXLp5bm08mU6FwwmeEKIMmrGiQDEjb4iSLywiH0PtgaFh0I79YHIp2zC2lyXKNzaYefXDH//Y7z14+h/uomYFEJjjqIdWHLB9SE54+/idhEALBEOcNn3ZcKjFwrVK3G43nPvdaBjrc5MLwpwFzrV5LDBJiaDMqgKBo7Fu///a5pfOrS2v0oCYOC6oTCUQ+9+rPHO9sQa05rbZ2SnVCQBTPzUSpzqfnmzUTkAF3H7bPzEzTxrXyNJ8eTkE7AaOMp176xl/Qn3/pR//6tzt7JPfZQCEd2IOdlqhNr/vj6VnF5wd/IwjPn8NNHdp2qwgV2Hz2zbe0UJhUWRU6HDEejuiAPFPruJArPq01t7a6kRYNGimKHKa/Nluam7l27YWdo+1HO09CUAsjSUbMFU6zsxRt8w7GQ7SMCEqTtDyB54lCCA4CMQ7cGZrI1LpyxVEtKGkUdjizzhBn4GYxSlO7HejeOG8Y6hHTX2jVSsUT3QfLBOuFTAr6/Xr7w87s0jINgkqlyvziEjgU+Umtep16VjCFooQYaVWq6E7fKuznO9UWJMDpugjPEpkKWui4J7VaoVoD9AwEsuy305NtOGkt6uUOT0+PcttPdufnFmGC3rq5t39wgIoLh4kSdW3I+vgNtvXyy88fHxU/+fATcgS8qxukb0MFnY4yknyPDwoUqSyXmazoYUsqjlvUp6CVQzg8ysYCYXVskOcu/BDRClaIxUnpa4LV2HwgPx3qDI7GkVjKa4YHHvwYChbyFrQMknc6iMeM6GFgl6BRbXiHADiwjYlgSKpAUHAjWc1eg0w5ppQCDnRb9xtqIhnm6C0vLV6/vNHbvq+Ew3k1uL1/yJGlbAw1Qj1gyt02xR8t42xdyo36bjHXgr/DR5L5hBDydt79+L1sdua1CPwyXfIFvBE5DAcWdplGD+YORy5s0lVb6nY6k4g9/Dr+lP1YPd58QMmsGNnKkRhHCEtw+jAonVQyjQ9Hwt+lCxdxWAkSJ1Op3Y9uEER69PjRyy+/SGL/Y3o2PHz0/jvvLC8u8n4cGqhloCyffPIJqaBvvfUW4Zlvfetb9x8/FImpk/lFzjCf01GWF0n1VWZj3uNiO1cfrsb8R0f7FKjKneZwoKkz/e6d41w5+PXrCUIe1Ua4USdNAztVqhcqdW1AydxWJVc83nnwyYeYSEK4KXIoFsWNI06NcT0dpdrvPsodvnfvzleuXb+wtkKJeqXoYwlwUmnE0PEd/Gjn45QUiAaTM+kl+IykSI295sbGmhOKoDHpXp5NJSK9/sP9fb8RiOihYr6CwqYZFFE7URN2cp2pmb2dPdo26KTe0zqH1RAmOWBN6Pz5jT/63rdJjDVjqZ1caX5uYXnjOfbfysICYufR422M8ZPGqAVE5/hajR6dyI+qvdh8uIrjOR41OB8cdYpgTa7bdz65d//OpASt4PgRo50AkpSToTYwRQBF82jYeYpLh/soBb/oTUrFaZxrckZpOkq0c4Q1RDoENQIIcUDXaA9puJckJI7OOZs3D0R+CI8QvHgQKqZAGRRxYPSabZEpQrEsXBncdgJwg1a7QX/wWpndeuHCBsAZs4IOxo8Zdtu5wjG95CCBUHiRPDugGD7tBz/84fRZqCQpjpsNpUOcKhLk+D/Y2d1bNzv1cixoUgY+BH3CC3GlH6LvPdQVmrb7qGXSrTWahwePmo3crU8Au/X5+ZWZ7EKWDMj0gj8QpQUvsdTpKNQ0aw8c2nUTjfObSQvQktC0qu8dHLVq7dkra9/+wbvtYevFK1eo04sGRXVSrQglRLofmeU+AwGBwU5ckmob9vzKaserNmU3mk5Sya84qE5HwfilLMrC/LxOAIlO0liC5P3Iau60/I/+3//qT3358wk4iKVO86ThaVutg/xsKF72Bzf3TwHOY6m0KLxDW3gYOdQwbDacJBrcR8kX+qdRr75cKE1HYfNRo3Pu8z9z/S//hzeOcqFkVvXvCAsSDBMLjm+Gne393fnVC2RNktqNHDJ0P2m/3/v27927fyuZTn75Z7+2unHZm55h2dgOAAN4SqTOvPf2j3P53HSUF6+/KgLXSGhJpmTlhx+9SzWscMJsDsr1ZiltRuCUKGEatlPrdERogSLnuJxksIkMmomdg6U9cW/YI2MXUpfXGCqUVcPUZtucBQGIU0AHIAW4R+ttBzhHGVBrc2SDuKKZhL1Ol6hmO5HKYL2REROIzGQTse2H9wL+AOEH3HFMGBKhqZ6WTsOgN8FoexCAJLdt9ygdNH0WKBWAc2Qlo9Io3HLjto0zFIukUR6nx3ejySWdFnYC3RuQLZPLHb3zzgfh8FwoPIPMwiJEu2DcwHUiuf3Bgx3CZxiFEL0I1Qgc76kCGI29FOSXKVoXX4Zh1bIVuq14qctOCfxa5yQvX5qPL6Uoy0T9sHFPFKlU8uVWrWNfWzpHIazlhaXuUHq0W7C9eiAcpU8lIh+bUZwO/vdUzwTXFoaaD7ZoHSpu5cCv6ehCdihVkJlMEVcUOA6gmVYqld9++/2lxTTlh9jSzcc3fue9B0edUQeeVrMDICGcf48cCoejAWPVcJ/5ynVv7Cz+t1/JVwYdEm7F0LhSspSaSRaOi+989BOspUx6BgCw13Hafdtjhui9Yw0qmIqQ/qQOyZBdCsDAP+I+CNCRtHF6fJQyNJQjyyEClk8xhkgkDusHb8ZPRKFcAYsj2j8N+OME3rp568s/+zM000SP8izISXC+4fD26UmBDwDD/Xt/7+9dunSR6GO1WnnzrTcLsMNzecAVZkxwEES8XlyOOvqDD/J/9F5JpRghBI4oaXTtH779Marx9TdemskkNyveoatf3Uhk/RSxHtU/HBQsH/YlHex8Rnfr4d6tG7eXV+ZAmPKlKontwXDwmfXzyI1Q2Mwdnu0x9DCO6b2TvYsrKxcyM89eubq7s+MluYw+JQNnPpPKlY+2WjthO+uc2kmqCZn6QaVy7vnrl/QL9x/ce+fmT6pLC9F4MmyGLi9vdGkKHWgfVYuEG2hWG9TPzsuZmrmzU1q4/CJ9cnFlWR58t0ajEo9d+7mvvHXtmfO/8dvf5OZZ1tmZOQI3it2NZbzZZatp6Lfv3s132I+hcCaeWA0LDrErPXH9OwWS6iUIAaQQwBzxeH7CxL379h+ROkTqE+kDAo2EoI/GUFEzZKGhaKgLY3rNuK6F8aChcMANYK+TAC+omugJAJRJRxDAGTqohP38K2rg0OdLnXRcnKyOqDs5QU7J48YAIwtHbGGan/S7tAZoY/Wi1UR5Lcd+8vgRKCcxJ8KJM9lMTLTFRgj0wE+r9SplZ4i3T4uFYJ1RHQcvhQy7s1FsMCqLwnMAqhg5QFk4N6DAGA4b6xeeu/bCzXsPPvrkRlMUlx+lsjOvv/46+Z8Hh4cffvgBFhCHpEhxsmKR58qks5QzYh93acEtOnv7qcQ3HYVTmC8fH24+uXL9EqZ22xkTRYWgEo/Fjo4Ps+uLy89f3DnIrSwtrC4u4gmj1lOZ2dPcYb3VprIVLRho/E66OyKT4KamS91mdW55YfHi6kn9iHLU01FgtzC1/Xqr1+xYVPmm1QCNHI5y+DTE3n/j974HWTwdjUEdlkFkur1QMlSGyeNjl1u9ehnnhYIYWZIywkGAL8q1ELVODkdkCEdjofoknslAPYhCZtRYXP/uR7cKzToMAKAGSHWFkyMaxoh0arqpUTqCghMUhRNJUlTw9Hzrd3/nX/zaP6EmJHUQiRL9+3/tP1vfuEyMDetAIIHd5jt/9N17H71PK8rpswhqMrtEBHG9vWHnnY++V21insl9p4UvOkA/jRrdcZ26C4XywKXSlV+Uc4dbLgKWNEMlh33QAZGH0+4hN9yS8Yoohtpv9Sl8TVmh6SiEz8k/ErU5fdgxtIoI6KZJ6JGOE8FoHM+ncJirV/LkNIwVKlV7ByJepGVmZqx+p3R63O51id/QpJNQEBufUr6cOIoBs2/RjwU6HE8u6DRUMgfBJet7NjtHdJVqZ5ySWo9gVsWpDOBpRqPz0XCGyh2Fwtbdu+/G43PIZnYxjj8bBtW9OL/YH/Ue5fbTmcXV1XWvrI6GdQKTE+xLDCNojjCsFbJrhVfOXhbJXbxCBTYgqmF/MYt/yixhntLUThznHq38fPHM7Ora8gxvaI7Urp4juRT1BjmapCU+iQs5L7z8yQVdBL8c5mbh5PQn3/4uLC4IGlQvpiZ/JEw2RIyMRRTPnRuftJudgM/XChtO5zg+u+CDwrHzqKYkqIRL7dsApZ35Q8402gkHVKLSCKG7MxvzsFEeINKI3HMmQeEFc1/OzKcOT462dh/FoiG2GRxwmJbFWgkmAqU8aNLDjgUbxzO7+sxVisSAPuheqsLqsBp8jjWXwWaFT0Ir2TNlBrAGm1lkokgSqqI/l4Xjh9xYXV196ZVX33/nxzdv3gQy5dHROswnfFFqrDC53LbYLm2Bgr744ov3Hzycm53l2Y+P80ws/hLz9ama+fKXvhzdVKoUXBw71dOtfs0unBZAcsnv3dk6uLy+4avCV3D+5XeekOqE0V7p+aA8RvGiZfRRa/Xc0qVnLpH/l6SQRIDMXlqvBqhHR3omPdDx3afrEgmGbG100K786OFNJMbq4tKsbR3u7l1aWLqUWHAbdmpVf1DYezIsNqz+QiDzMH9AmzP4zUQZwf0XVlaHmOx9sgFcHHHf0PPC2mUKjnThUJnjIQbQ5DpTM1tNo+IEifzJoybCGUhgJpt649XnKKq9vDj7tV/+ld/85h9UCs18EyBph8xUcNidwwL18t3ERjRlYsGIXahTIp5qkm4TmjrcFK/UlXoQkD+1AdPJUL5fdpwGuRjw7FtYNq2uRX4Fpe6nlgIxESOF0hJCxUvvLmgEdEARmo+i9hLaiERB3Uex5blAcC6boB7gcNCW3QF7IBI6C51tbz2+eOkiaUN8JKqKRSqWSqA+Q4qhsTUce2VtKZlKsKi4VFBfhH8Do3M4gLAPuYBvwNE4cjD3qQ6CjYPIA1BvlSpw4QW2N7nEMWJrcKgge7JoopEJJUPMN978IqQx9uX6tRcvP3+dU8c9wM9eWVmFj7t07urMwgbbFKOJD4C0jXZJJTMg6VisUGMd2gQKSPNsFPjc+AcBk+6PNlWP6U+dr6Auh0urC+FkdHd79/ziquw1yYDpUe7TVNtkdloDhHWlQRZ9HfaeCW1KcqJ+o+10aE4S8fnC6VR5WO7YOBBnxwYKs2eAZUcZbBq0NMYhC+C4Wi5dorF7PJk7xQlvHvZ6Q38gCdXHp2weH+4WKyRRt2iZQH8gx1MmkuZYnBgEANxW0isT8MhDVCZ76pzTAde29WT43dt3vvVP/+XV555Ze+YZ6MbwYXBSRXaBZl5+7sXFtfMQOgmOCR2jquXS6Xd//3eAoWPxNFp/b+fJ7/7mv/rTf+ZXWRlKGnucwQc/+v69j9/3uRALA3TUZGVEZqbISXIoyw0xgdo+FGCHPtBpVNBMovyVROgC3zPcLYC+t2dXQhR/HROQZgHp5EflP1xO4nuiJJ5NezsKhWmJaB7tS40ATvDkwktg+cm7g4RVp0lGwDHDEXqOgQEK+QdEKUO/oMMQ2B7l7Jx2s45dw0qQoFcs5gnrB6AaU9aOT2HfiDqiLrOBPAI2YdNNR6HHHfsNsBpeE1W85tIXNvd28I+DgUh/0MBA6Q9KmcxyKpO4dOXiT350ur/3aGVx5o03rh6f5Cj+h12IK//8s1ez2cjf/Xt/v9+vLS+nKPJeKlTIoqAr3nQUoViEauBGpiph4s2JV8SNTfYvqg5TDasFySrXeza1zFMhYOoQ0BPzVKjSpoDCBEgupNlTvSI+VnzodBSKsVLdgsrFNPsMx2PkI0HDQ4/tbu1yHFhrUATKd1PtjaTVcrGYMd5aCWrtBnUrhItDZSZJJQYvwCUwTkqqTgr9Wf3FcNkaehpn4qxmdQj+cbIA+LiYXewNWm57vM5R7vClF17EzRlTRKHReLjziMmmoC2fyZnBA8aPb7xXzWaSFzau4N1StWFpY+PkcKfuWKkA3A6quEweCINJEDL72B+s7OHhUTBgwLPEZMQEp+rMrU8+2ny8SXYU1jS3wohwWCCT4UcyjSwos0mJzK2t7VdfeRkfqNqso28QJQAwSdq9BYzK9gGT9urzL73ynNMaWNA1G2Xt6KCgPbsOaR1L/UGusH90Mmo0Im7CstfyQ61ds6lpFQ6QZT+grhkhgkTcR079o7v3yS5g9e7ff8zoqBmqB+iYYE8zwAjKIr/wbW8d75BmfvX8xZW5BXMx6wSMuNd/jaxbw7M6t/KHux9/cLr7xCkaM9LmcOew+Oh8YjUVJc1h6eDkiJqvuaPTx/c36Yb+6hdfTwfj6HuFBsGUZ5pcT9VMQ/7dd+9fW0xkcFRVL4Wh6Pi3ujJHgZ98ufpr/+oPbt15BMwtiBgQwojN+UIAb16PQZTcpv4JH+NKVNog5x1AHEKYC/BEmUhsMSINZLxNLmzfsF8j0Y2yHRvnL7nZWJmUOdptNygYAwuAbTzwe8Pnr66ettrlFrU+UJPgFRK1xvyqGvEblM+modPaLOXJaFdB1csyFHvTT3jIiMej01EsKqt0GjI+Cvcqclas7e0thDWAEqkAInWf2AgeiOPiE3B6epAH+p3j4xzfsxVwXKkLCfTUrTZBxkEeUE3dRssmVCCy98+2GhpIabWp5I6Ip6IiionfTmBrAhBsKfBHZ2ZhGf2D0mBe9o9qpOPyejBMBsu4TuACIkxoiXmrNfunxRpzBmIoioUGvIP62bFBBFPt5NUvvXX+wspxdTfXUvrbokp027KTgXh1XHn8cPNzl55JBELtahXlLdnDJn2UUdJjoCxCHQYmP6eUgjs9X8vsjVeys1U+vlkBr6Ao1HTGeECeN2AGiC21aw2ySZi6pbnZ9UU3f1rVQ6ELibQCEGFb2D6lZuNhrnjU6Lhug6pzAguUQVocUt5Q0SmKCNK8uVrf33yyfHFlNhYle3A6Cr0AKUx3lDsgcwlhyqOCaG+fHkLn8ZHYGU0GI3HkbCwWp6Ehf8JKbT283WzWIsEgoTV8U5gAD+/cWl+/kJlb4c/3njzZevzQJ4+TlGLW9eko7WG3XCrvH+xz/oFZAgbZ8tDZ6TzWPtg/srUS6SU0S0wFMslYcqv45MGD49icXwZd1LQQmbtGCByNHjE4q56OrVjesToSie4hf73amA7BV+QXGwN5QXQFQhcrjkkD/gnuhmc86rRM2UeBIqoqIR8FVYSossCqLMK/7EkAaVYfQcm7oXJhh+HLsyswqJl5cv2mAw1HAep4o4hhZ2xt3X/tpVdmMnPw/dDBnZ4gUMFu2t27l88fdLr4xgW8QOQZpe5BC9JaOBROyeUCtj81nAdDF0n4gx/8IYonEkhgtY1EqZr/X9fkV5Mv3CFvEmqGfBzuxvWW2vTqYNH5GahRRRcXKqDjwqibKF+hnD49Jp8OQFpasbYnDekZrUPMaRPmklRogY1GC4eKPyRQMTl8uCBKo937ze98EOHncHgxE61bChVFUWMEw5kyi36B2IiydOH82uKV1QrY/NNTOVQmBquoaoDFgWKk+Y1oVo0LSCNetI9oiOLxJLPZePPQrnLKnFCQYhI6MJziqKXD4g+//11IBtnFJVR729VqY/PWQfnyMibIiLoI0wteu9BkioTUyp3m4eawrNValQqgJ8cHLCuqDSTcH4hgrmGaqIY6sIaTJAXSxQUx1Sv7jo6Ozq2soVopTsOE4X1jaKZnszRQeDhRM4CxOCZ+PFKfG12Z/9bv/gBTPho2MJH/yl/+FerzU0watk4bAIK6WZb2YK/5wfbJfrmUMoeU5yTggK3P52I0U38VQh5EqFQyThQWjR4Ib0+fpQOxhYWlJxPBAlg/9z6Mbj8gryodDtM79PmldVMxFhT1z8xcw3b+1sFNsiQfVO6+e1vTVz+fTKz3uzAwK1Rse/fdD49yp9Tur5SqqWiC5pCjBr74mel/pmY6svaDW1SY3vvK8xdXZ8L7e9ufu36ZaEl7pPzGd27cfnQq3GQggCmACFkECxnEn3oGWH8UgaZZCmEfUZqYmpUcLSQudiU8SIwOWxM19sVVPSX3joiw2zs+iilqQverw54BTULA3qw+TijE+cob1y9dunCFWmLVRp3YIq4MH2zIbkL3URacEpOFytGTSh7XJoQ/GAqaQT8kNNCk6Si6V6YJAr6UiHlxPlQv2LiuKsSQRb0cXWe6tzc3KWXR7LYJ8VAuE2MagwltAHGoXKuC+vOXUdgHgH79zsRuYt+K88OHTkd5++0fNe17fq9JmBi3Fp8MNgGPgZXIzLBjRP6J4GFzzMHTISJByxbJmOIz+BTOrfhCViJUSPG9sLzAKcBvTOrxlqejxDKx7Ln1a+uL0QRcIVWreLwBCXoERX6PDvMRM6wmM6V+e57mRCS8Ue+HfnmUixUwpExL12wqUyrRsqFNe96BK/UbdrmfcxNpCfPNH5B9Z9AcJ6Rea8zNzIUj0cNGqZHPLy6vJpcWK0ePT55sLobTNCsz4cVaChlkuFuxcKLnUoocOJOm0BIcfmqkQM0qdnvpIPlxWrlYcIePQUDT0fj62uoPdk94nA4FIzrdcdJdXphn0yBPMWOZI8o+UpY7mlnE8qOmE6Qp5oUDzCyJzAxVJW0KVjeHqkWdgHZtZ/NBdmGJD6CxkN3vRUT/EJFZPp2x3/6d30bi4pIitQUINqRGfWsw7GiyMR9f3a/Qb74NhhBMkK9lZ+di1Ra+J0UiSLmAVO+XVaIdIyLHqt+tFjogjUQj8KyjsQixIhLyp6Pw4awycg8JCUt4zITyJMS0kSEep12qnTzZTc9nA8kw+x2Qgn2B+gGj52+Ahtge4mDTRI4AOBmq5HMpCqpXAMdk7T+FTBtN6oSMuz1RtQ/6/u37d5595vW19Wtb248Ngu3gszAvh41Ou14pn/CZNNje3tktl39jYXmBBAwQLHrCPdneufXJXUJByNtC/pCdFotkqYTSbE4fRZgUZ9/9if/x8kTT8LIwoQZwt+XWyK102MhYIvBAyfX35eu9SquHAcU8ElYQG3zyOSyf+P9ES/H/jYAovUN36sFpT790+dHmlhPFfPR6tjaZCt7MjWGSEuRko0OkJgmpLI3kcsM3tn75l3/xH/0P/5yMIzSZ7jfPbayZhv7k0SOQ7VotpRqi2MD0ArMTlCIcIgAxGoUT1KUqAJlfcL9p0kKh6IEoREtDs+RhjPpzuF+mBFmaOmeIJTcZiB7t5X6j+PtqZJ46VrBpkP0w3g+PilfWFlZSkekoFH9ii4JtsGQk8YBMNltNPhYvCxIT+4QmgS+9/PLs3GzzYZN6msRF8MKAkpgStilkeyBQMDKcgNTMzMbaOmxgNgNyCcpA7jg3HeXBvVvzMxnPAHLsaHZ95fUvvb63V6Ti6sEJYr1KUhkRm8WVc+6wDR7rcfqmOvjw4WBg6+wsrPnnrl6otT5kax0d5rgrrLRmu4XpSU9xKG2Cujm5kHhob5YARQSTEgl10qnfPdmlXlRCEwFZuGTnUplsNP2VWbXZa/3g5Pb2oPVH++9K1cKbS6+Ojpp37nycP6AodqvpdlLhcKFcvHDuvDS07hWKg/a/6c3EE8la3c3XG+/f3XSsRcpEQzOnUMXHnzz4gx9+QMNEj1eUaObGIHEIx5Xu9ZybCRMGCMLDPXJQMNNA/ngfjj758R7qyY8zmTAw9M3JI2WysdxRDi+b+Pn+1pOmRhsHT3dsQYgRucQgwJIECHbrve+96Q9cpotqOIg9QrgIe6HpDPF7DjeLlX5roEpGKhbNRHwhdC2d10NwerALphMn2GIYLaKghwMsgjdDy2fRf4KWGLXTY7jLbOtJaiGRJBURRe1r6uXUCSR1UCvsRR3kR4RHKDaD0yKoNSgCW1RJEed2OgpZW5ZiKmMKwYfIEsCYQ3FwYiGLTXSGQDvQS4hOcScCyqf7L+zDIUvJ6YXYgB+NVuZuxQmbzO2o00ZNDQg8KdXpKLROyHVORlZxcZlGUYmNmQ1u19BqsBiHIshsXV1f103Kd1aTXj1XrpxUq67qX8mkg6bBupAwhwjF7GUHpwOpR91tCCHLi9SgUq3+4Pjw6GzGPHI2FSMvkP4cpH03a42idKQhJbMzi8+OUtFk7aRcOK7AtQ0bOudSNlQKAIhkXQI1k5Q87H8DAiwqXNPyrXaJKmo4UHeeLCwtLM7PTUcpOeQhjXvQjHRmSeQ/oXSF9W34KWw6t7iSiMbh7lHug+6O7DFBEmXmkY5e+GURe1y2CTK0W4f7O2v5Q3KoT46PgeyQ37gexDmmozy4c3tqXRCA5YQCylFIiWQMLLtQcg64qVYtwPqEs9z1tDS/bNKlScXUgH+iUZqQR2x1qggjw68lZpPtwybrBNIdoQpVLELP7OkoCM+JpuGNXXwYR6LNGuA7KTJ96hts3Xu0dfPuS2+9FpqNCSojrgS5o/BMyO7EKMMOoQEVjB+BsElQkoicQXfkk9kGYPe8czpKq0PTKraUfO3aq8wA8Cc4m2jH2QOxoTAJ5QNRUVCNgWaRJ5h0VrPbSKXT3/jVP7O4NDO2SNsu8zekPBznNlXKAGHxxGahmXTgjbTORMC/rWU+1S98w8VMIljZmQScC7UGK45GwJSqtbuPdg52Dk9pc4eBSa0png5LSeS/IR2YI/Hf2XnZCKVRdexn76gO1eXhpmd5dQlw8sN33kGFCfuUPyZ6rYFPy8srCyiA+4/u6bTx7g4fPNommCFUFo/kWgEfJQtoK+De/vhup9z4z/76f+D3e/+e55+Ke4WWiTKDYO5nAUPAmEwputukMZBKWFvuwDZ1CJANDEfNmimgMGkIFmH5rEl0jkYaM+ZhvktAFP4AEk2UGB57W9u0Y9ltXZwRQ0yWiV9hCbGO9AuoVoXkwStlFSEpxqPR/CnlJfOzmZm97R3qHmGsQJhsVJqcckEcsqyVhfmIEQL/j0cjGIE0pYVAK9jfjtsSLR7E9d/9/X88P5PIpiNABunNzSWiF88tgMfMzMwTT2w3c+gsZ5SyCH/LUSLNoM90mATzka0Slg1KBcgO4/nkOMejkAdPRZuDvcMg/eF8o1hi1eP5iFF4z4QiNAJPEzU6hLNosVDU7KspcuNe62cvvaibvnylkgzr/97FL8Fa+Zc3v/d2+2En/7hZ3DabAb1Y8fX7waDcD0nf+PpbESVDclwJQYmt+zTEcCaaURKQWOyBdkAuePfx555bNyLZ5mD8k48+GYCVsAw+nTllZrkzSjEJSwXHG1WPkAbxI2/YQJhj8NrkCSBiqWBInnk6myCJtP+UCT5/br7VbXVFViDn0q7ZHHEqaxG3xgoS1qgI3UqenXs3jttWUqZvh8CzO/K44A52hj0UVM/0Buez6eVFUvwZF2eeMnYmnb1V8rrP/AxaBPbbjdIpbZ5hVyHHMC/IGQYMIzEe4o3YPcguBqLdxYBAB6yyFs15qMyBzmFPjIeUeLGtJp3hCOeQj4CbMbk9yKXESLhPLuJJnW7dVBgXL0x4piRboBA9MmOxUgScvOLBUJOiCLHgMMG0orOTMAy5G/4Tlg35G+KZmU5ewD9mrnuRYGY+MB2lWqgQTnq0ebRcPHn1leuUC1xMzOFpHTdK8xdSpVx9Z+dGJCpSuim7TtD+yeExuSEJU0vSJz4SOs4fUVYiEiOV0oQcVOtCn2lznCl+QEVnYr7TUTg43B8gOAsQj0ToY5arlD54/+j5l18gN/Hmg0cBsu0UOZpKmsxek7sXMCBqhjxWtKugTXS7tHhhYpGzyIV0IsIZS9OX6NHDbCw6HaVFYINbB3oNCPuk1x2QfjizvB5KxCiVsLF+aS6T5i0QFmgEJ8ojuJLfCLJoTC/1bEgzenzvHlH9QvF06+G9bo8GoCfAuF00OLjI055G+DeCmzEpEoVoMUwoJrgcVOnt0T0aAoxpeZrwXumLlYTIpvoAHDyoPg4YeplgC5vKJSGafC+fT4KlPaY7jzVAVWMZU8T16Ywh18EaGQeXog1NzXEzcFuQqqPekH5rBvlXaB64DW3yrAFnJPJ7RKCv22VzsCuQNpCDSasEVwEEhVIFhMgRQ1rh0ExHGY2qJPPA+Hzp5ddmZ1f2drd7Pc4O7TJI7wilIZgOe8UOOJvYQWCT0Bbx7X06JZTadEdl/6PKGYtqaAPc2QFtAIlpJsGOORCwwT99lv/Vb3AMsC2J5IhefMVai2ehYxIqsVCqForlPjwb0TVHUGnJAxP7mA/mSbjY409DzfjWBJ3qjTph+ccP7mFlMtdQG8QBYf9xAoRDz1nwBGlv1etAismfxgq50yfN1oPtHQ4tUSIekwN744NbzHw4EnrrC69dfeZyenH+qYXpUek2oJB5RTRTH8Nw7YpQmTMgtWzoDSIQaFrItFMa4xTNSQklC4+M2A/dp1wDOgGnsVjuYu07oi4XKhMbhg1OCmfgsNJufPR4OlHcBpgtX7EJ0I+Nbofbxu0GEUEOLs/P3/r4xr3bty9dvJiIwPqtVEbDmZk0IUbyInukX6GngVn7vcJp7nNfePNbv/tN4obIT/4cRYX90ZkMA5WRnKo2dowm33nypJDvMQe0mZjPigQwcvyS6QS9yIjIUpuLZSfLP+Z2kmmSACUOI/uN0CBiMnI+RB4rrCmN/EylQRktmpayVNNnEdaJiIWgskCNxFpzIduZFsTZfrPwg0c3BvbwxZlVunz1Hze/lnnRvTT+nZvfvDUq5ZoPFpzY7Ex4yW/ODZ2uas6NrVQ09OAJNZCqBOU79LyaXGdqhiNDUGKs6KRBlDrDW09Of67ntt32Sb1N2XQqGQyG8C9pjQgWhD0uwnXELWgWxNqjYHGjR3aXmWKjoGComhWIJCLJDDWunmxuwlCZDhaCrZRO5XNkR7MbPZgRZKggigFRp2/g6divlHnrVsqyL6IMB6ce545nuOMddwOqfy6anJmJJ9NU6YHywg4AcwTwEtdEe0w/pHC4Lbwt0DwgCYrrC2+BNmJICZNv2PxMK2lZeDATxiN6xKKaPt6rEMKNOuqCgprs+h4APebJxCDjR7Bg+Mq9Xns6yvHxw53CyBTJw4JxAjN7wnikYQ/ERAHWkz7MTmUXAu+g4SbfE2+clMnDqRdIGdqa9sfiQaZWH6liTtScuXKB7MbpRQ1QKvBsH5SP9ov087n+6kWKwmUSCxRgPqofjOf8HR29fWxD3R5L/WTQ652nViA10JgeymfF0+k+baWbTcpLnFQrt3b2E9dWwNNyW7mAaOR9tglEBRxVL7LWsmc5HEUrBn1G3a4fbB5QRCjXJdbkodooGpjuB1GvUXOgG/hiaojnALqhhq0EaTfEjw58a56HTO6gX/ODLFOL99O8GSJ4cBJ7HbostOEOtOowIMiYojLZ1uPHhaNjONAg6SS1YNiyIfnarJSQ8QTVtre2OCi0Ox5ahO2bN957B0Me2xi0EzAQJY76m85YrQJFlZwPTZRu5VGpPQbVn0rLrXav3SGUROofXJVKl6JgDn6ID2Ba7D6q//dOB6dGrDN0+/hINNZmXfEdICeD5NAEHRlEsYyzhWHNQEmwJrjwfKlaMxxQKkIR6L+TXZxN0PZ9LkHVGRAtgncQv/De8JChyFMkCaMEY4MtKuwOslsE/YJqMQPmEIQHw2c6ymDI3VIyh6o2NXj1kLNwhCj6ipdONBeQjGiQCLyJOAFwAnwWlitrGIGf/OCGpoqSMDQGxhUBw0REM4HYxUhzxkbN0cDo7Fl+6n8cEH4S/00uoepFq1Mhc8HAK03RGoHjLzYsrZJIkcZT54DxA38zcef5E3FkxKLwL59y9mHtodQawA9XUZDJwODZ1dnT/MHWQ1BEcRtMJG9ml7IUGI4HB/vUg6EYCVlrZlhPZ9IoY4iZAA5CJRFGGVtzc9m/8u//JXJxOWl4s9MroiSYXoxf9CL19ZCdvI54wJFiqWByIgRq5eLuzhOYgVSzxp0CLyeLlkK5+GutYjkHCwzgk/IbCCVuSfA5kE88ogYbYToK1udUNPNbfOVhT1DOSLXBG6CVDsUlv/+Hf7i/s722vLi0MHe3WuR39H8LULxOksgfqjUaJ3v7S3OLsBrzpzkI/ctLS3CCKK+J9sIA+daPf8xAc4txfH5mmB3CvsXnaFUHB8eNG59sU+qIBAmIM4QtY+EAjUtikTAFiQrFRouigwF/ZybuVSOE9sMBiWRn2jTCBvXrwXg4IVZUmEXTRxGrxX88CKvHQ3GH4sJv9tBml7CQd69drN74YXm58HPPvRakpl9h+Hrk/ANz7pbdOlKsVr9aqPYGx32tby0kgj/6o+/aLlgfrAP1oNEqiPUS15maEVIfhhmMa5dmJ+pBqf1rv/HtL7z5wv5puUdEAV0C4M/RhRBk6P02Fhm4LE3URUIb37OQE+usw1e+h6saTxMHhoFZaBwx3cvTwbAeQUIQxBBFeNpJq+gJfYMfJlsSewh7hk/ZHPXCmrE5KD60u7WQGZtfzi7NRLIxEVEg25Vb9VJJBHNECBKhUZiZp96MMu6jmQUyxq+QP+hoCXuVbuD0GRRvFo+NY0JhO9QmDhO9ojRwbV+9iu3ZQUQK2gKYBodp4mqIFYAkTYkqMoPo6jO5ZNcHQ4mESdaJwal4SYhcqDxim8wXXG20Eo8zwcvQLkwUeg8NxgYRpjMfzXkhtVMMwdtlqNHBmfTclXV8w8bW/bMZg0tnj2jfUyxUf/C774bCyrkra6Y3NBdMEvp+Ms5JWY82FBX5Ld0iLTFlZ6kw2iZ27LYhMoCvkYhad919ykUc7HhMIzU7d+8nH33+hReuv/HKOz/83nQUCM10/ay3exFDRRySionxHtX9TPTuwydhn38xlel1G+6YUAGr542aJl0yiMZQdAusCjYv8gsrRLh0hjgnmEh8wt7jEhlMS5mU5/27DIQQ0VWj6xkXjnYx40+PnxRKxW6zDc7B8UUICm8UmUV8lJWb7n4qHoyGKwszGOtkyc5mM483iwSiqUg0mT8hynCuCcEIM3hywbyFDY++pJLBEKk47MJiH7W7JLWwJMDkrCYh2YALncxwSh0YIPQkG6ushFShCmG8pgfI5qAumA4BBR6zb+DqgvtHO7cOzV6mo4gCy5DsKftuwbWjBYZgDAh1hecKAS0VNBN+0kshmEGoYk+Tp4KkA74Gho1T1UnUAYMsw+bhb6YmkaBxMw+ogIkwFeMQboQETA0CmCAg+ZGoShfA/b0TTD2a+TEu+UnQE1BYqBkUD257sVzGBuv3XeBBRcJHonqciUZhOvEe+Ez8KyGI8esFTC0uZnL6DV85R3/8PYvigZaCFUxjOx8AXpF0PCQFYwvVwq1j76NGxN+wAOIFBJZYfbx/4byzxYXZOLlE2JGVpeewYdImCmW/WKN8T7WxlEFqo6xhf1DOBloBh+L8hYsw8kkVIgz+hddfXVyYJb0NquONGzcPD3KYpiRXX7583hmxPl3xoU/PPkWHiJdBbgBUA58QtR1g+jG2642ETZRTq9s+QV/VaiuxCF4MkhrDn1tCilNrZfuIemcoCzwDgeEJ70mEBHgOKIM0rWCziwtxjBjhQfmevjrsW7GEGCRO/0c/+OHf+K/+66//3Ff/8Nt/eLCzSwPN/OEBv+d5EQ7RaIzFosYaey8RTaKTKuUStY6abBLy6QR7LfTpEvgpQDekXyL0ox56DfwuFkbkYGX4e8NhjRAA5au75VyxwnnhQUAaEK41cNF4+IK1Meo6JP36l+Kw7BQy2Sl+R3bXuG73Fcgr8lPvXzwiP8GsFDa/uISEFPnpjAVghStFvHzw3tHDitV9jtozmSVff/zW4gvOkVsblH0BtXrSr7c7AVnDUnepVFQHhVbcfHu0c4IZPvnIp2omFokMBqJDMQ1JIE1xTt/++N7+6Wmza9U6FBEUDeNAFXHnRT6hQZ90RLSG5yw8AmGPi/gnUAXAOuTdaCI7cmX6avUxtbwq0zcdDAOx228HI/qAxuE4HPiz4mAh+/m92I5CbFBQVrbfHcGgtWum7E3PZ2aTy0nypuKyP9D1uFRjZ07BW8nvQnDBqsEAFGba0wvvhBtil7HJiLwya3w0U8lZFNAvvXuRNJMjLSxS0hbZ5SroIsj5JGyj0fS7Jz5AWHHi4PEVni5N9erVIqDQdBwkKrvckn0CVafKJgQSED7wMuF8YtGyCVk8Ih28LhQe3zBFCDSOIxtOfC4SiTrWWJegtaYW3ViZXZqHF7m3eVO3pn6zR/XTu8IDCrAYyeQeF979/l2TniV+SuTIqfAKzToOKzv0hgNprjfL7VF5UGqaPd0axxr6mN4HQEf1Tu2k06whRoN6Jm6U9w9J11ygkLq3Spm86bOUigWfn2QYI0M5n8EQBzBKYhNmHpVJQbFkEqax69CHdEexAEnx76lkM+gAB/VD9AUS+aQyahifkS6tCAo8BKaJVLdENCrIVpNLNQNocyqWAAsUWpgqpOv54PwgzJmvp+4IRiTGI54htEN8SVEs4uHDe0BqUHCOjnYmwTOBjyLdxD+4qmARJv1CziBTKlZSVYMV7NPQtE8Mf8Sc4yWK8AUPgfxjv1FYCAMF+K7Z94qEIoIDIjzDXhyP2mPmD2WFtCQM2cHToHMGcQcvAcLBxPHhaTCuIRch7/Bm2WBN0qPCfXhhaCf2Fg/Tn/SNgMACcgUZD2+GWrx0ViYExJ8jUtmxBPzF7oLKjCqAbwby2W7zFf9oOmMgKCQyMSalt6ALYfRj1u3u7uOHa2QOiKQEmUbSeEoIBcZlS3EzcNMgKohMKQ+lbBtgbpFwrFA8mnjbIgHAZyzC3MRRno7CiOLg/ZSCmb6ObiUOrKLn6i0eA3iJeJiYcYS2OK7ib6bv5CsfIvSLuISnM/mGFzlBvFdcgqiI+aZrAUgsY8LU/kwi5KzMcrf4VogOkgQpBdVodO7tljodgzBeq9FEttz+5NajO/cJLeBKwj8GPcB2O7c4n4pQ0XIHIBNSj8DPJ5e4M449hXIAXkVjbC+hQ2KqoZCytBgHWTjInULKuXD5WsSgQAM3xF+Qr1bBPC4VaQE/qQ4tMPzJiaWQFHuBAUEJvSOvdbaTJ0939gW/EAIT7wAVZwG2Hz/523/rbyEGX3rh+Wg0cvnChvSLv/Cdb3+bMkJwb0mTBmAmITWaxhboYRD+zjd/u9JoUnux0qzzezGjZxPmMcBPMPF9VH7Eb2XCFRzLvu3WQaXHdCnEzQKtRKghm1gND2azCCAE/PFYxLF63rEe83vkYJKtOEIDjhrk4WKWkPILRAzCN50xVo2l56ixBEKITS4hnByyFqm95Ppohs0dq9rDysGT/N61+dW3Ljzz/LnnNhbPj8Y9XMWDK83c7slaPPna+ir64Se3d7/zG79XuP+k0pcJSU1HOVsefHfMFqrjcCTQm8KJMgKHp2VIbFhsHHk8emBlXkZMUwqMmjx4k7jsZJuDPlVqNY4ysEo05E/HIplMrNEdkqoNjZjMq0oZQFlcljMkYSFKb4AA7Dqq9SOPEM6CLcDe5RIbFw+DNqKGNgzHVsLU/6XkgTdADET3DtiOKCUcSAgqvBMJIzwSoADhRXy6oam1JOxEYTwh/XFORDKXMJYR7mw0FmWCm2FWgG3RSY4IL+0v/HCTJiFZUkGFQBIGmvjKAmD68fm1Yskadv/4ZPFhqAiVbEo0CTIYN5MTiCwmcwMKDUS1KMJwgk/g7QnuP1KTm2YdGZr8AIw/xFkLhygRXVhfp+/eyeZOdWefloz6U6IBjSUb1W7+pHzhpaVR121U2z/67idAV6N1e8ay46H4RuZSvd0s9SrsQVM2h1pk6/ajfKmUnVut7e3ilTOikYosXNyILix0Bx28u3g25Rp2o42VdKYycUSoqAhrgEJEtfoI9hv6GI+EBiwJWOSU+iJ3g5wvZ0S5H3uAwtIw55lXopgiQ0FYk2LtUP2YyJwVQDiapnB0KTxDwFqsPSQfAbFCHvLqsXDWpCMZJQ+DyPiDfRCSPh4Vk4xnIsHPFEUzyWoFIiJfXVQ5ffRkC2udYuDMIBD4xErlyQQewt1x29PFYpQ2bTfbbRrNj0dDMsiQJVh6GAKod0QwIpx6GSh4/BXqKxO2psU3OBfSSzwARkkXBxgEBRo95RPRGgRGqTyBPMdZ4a8R4OIqVWnB1qCgTBC8m47Ip2WK7yZCacwqDrzQJbZNfvjJwSE6j8JG2MTkWrDfiA/jebIDUTMICFwcoGa+595azaaADOnf6z+zmmnbzps58og0TbT1NV25VCOHgsi2iurkA/u0f+ZQTsCbs7MsilNjAgqruQUbdDBsCpuMe0AOToz35ZXzqs/gLqbPwjr/8a6evjT5inQGBwIeOqmMChwhpoc9Iawu/vCPFQzv/Wmx+/T7M8UjzunkMjx9LGbm1EOxcXQ358qiiI6Xnuj8Xkg6fEOkcKdLeumdrRyVodIUw+UeupS9g70n9fFTffLV1TR9RtKpuNfqq5Qml2jjBTR+ZmSAueAlAj0hRHyKB7JRe2DRriNByoPPaOTLtVw+Qz5oOEoXK84mK4Inxe6F15AvVrBGMUWR7nhsTDuPjLnI3hGNuBSlWTnz/5iM6WNy24iVCBIKFrnPR38pNm2tWknFYxg6O5Xyvbt3n3/22Z3NTfK6gUfVADkGuBwymHChXni0uzfW1PXLF41CgL4bYh4m8Ml0xsJmMqgPPagMqh45dNWjd6CTKzRxtmhlKLjkOGrcAGcMQBNqpGEkkn6K9dAzwKBKdRsTCT43w4Wjfo1gXIMOoBbVfUi89fi14HQUvrKgTAWnnUxXcaAg32MNcyfAhhxBAR5is4+ozGRB68lt5ku5tfjs8+uXKZuNyl/XwtefWwSjjsT8pUrlW9/8/Y8+uY1Ta2smdJjpKE/VDAA7PjbazOqLEARTy1GgXBW+pyjZJS7kI/OLEVezqJ7ip+ZVCKvBowPzEjqiTjw7GvNHMBZ6TZtYbaNKs1uekjZy08GQy5EYGlfktAgWPna/cDNoXSlWVOgCoRdcQ5SA9acD4QDVYsmt8qkj1QMjVZg92EOcIeFKiZ56QmdMrD9NA8E/G4VYER+FdSd2AzuIxeNcCEsLETjxdRFhE1Qd6cZZxOTz244RjrNFgNm5E+6WDcQc4Gzxj6gP06rTP4YfuFv2PG8gXciDqe0Br6UEDGOLZHLmdqIrBemHKA63NxlY8J3Z7TwmTylOKGYwbbhYIoqeQeRaX+bwPbnxEVw6SqphnXwqNBvF+ubNLZw/3Lf4fIR488l25UPPXWCfVrIWqkVmUiuRYIJKFbBrkmYiuWQuhoM/+fCT/W6h0j2JRzKzC4ug2PMz8+SydDzYv24wGB2Ou2il1OzZJqCDGUVQYFYDQeRajVajnSBRJOxXhnKxVRUxaeEHKJaiERiHxenauJBU7QIlE2IHh5zJRbWLU4fotEZkcSN9QZNZIeFPTC6RXwpyE02m5xYZm5gy5fYalarmpx1uSigPwv1sAcxwYXyMiVeMqOAJj5Y2OBDJEJyiIkSbSRVRWazQsQNArWNqcHKetmjLHxxim5HLy1mBd0OokLC/iO4CPeO90tgY8wJDhAqJZE+BjOLsCqubYhWktjEyRjywpyAECVQT+rzjIc9ZoERAoRP7g6ch34tMCdxKGi8pKiTpwWnnZDY5T2wFdxCXiwAAqTv542OCOjSNp4gvEIcZCGJQCfqf2F+QoBlF2JJQY5G6OOU0l8MIhyNwNmMudUAFaQpXnM0JDkmfaYwrgeUNWuwlPhh3k1iY10tYlHIUohsTQpT+WhwVJAbanwdRjfHS6iXgRx8N3q9eo8QWEhh8fzoKa8dHTI6gOOm8yC3xdXLicf3Y6RpAEqQXfiPAMQSQeNefvPjbiSksJknM3uSjpl95K7sfbcDO5yTyQQIeEEANB1EIdP6UsnBj3aGJUSIVv3xhiQaaEOk4r0IlkYkCbIrDO2l6jV2JrObClQHSEPUjnnrMKQp3jkjf42wJ8BExEQr4YJC2O3VNVNweBTyiBJPT6UKGZfMwmT6/H7Th5ub9SqNDMT1uDdxbrApHFeNRBLU8l88tkt97q3o6fWZ+x5NOH439glwKmXQyhwwYwbuYjUeZR1x2lv7Hf/QDxAuzicnCurAzmCMkeg8DYzQCCSC+tb+5BcOERxM+iTDneLvQZxwTeJLEFsTcw7Eb1uDDUoal07PqbfoggdIOmRfqcwExcQTwgUMRnz9I72bBdIB1LkumeARaWNC8GbTSEAITLgyPBCli+iwTMjP2A/qEXSeeiSUSG4LtwXnhJJDSJDqXYREIgUv2a77frB41b51scaN4Skkt9rVnvxDTgjsf79++e/vOo4dCLwV8DpklT6G56Vifff1sBj6bgc9m4LMZ+GwGPpuBz2bgsxn4bAY+m4HPZuB/azMgvGOuv/T1nydQTuQLLBIAV4SzIJZ5/bhPcNjWL65evrDm6TVo8umNzp20mjuf3MD5grwFjobH9fY7t3Z3TgxVTwdM3bWb5Ac4NomR8bmZf/CP/4fnnn92cZJA+/rf+n+RTCnDjR6PqGlDDXarW3f6EKNI8CJmZ4x6Vgiij+T6yZhTxrjNEIphC0HRAcc3fZ5up0G4D0ce8BTfjuI0lI6norMz9KQS2f/+//Y3eJb9Q6AhkUzJYwApiNxiRQRPCNCBPE4e9+zLxBMHXOVH4e/jMQpf+QwxEFNB9IiANPEGiHWwAAXQZ3vOreJZe15av8qPAqsGvyFMBT5Dm6YhmAx0WTxgmouSAihiwHSsGg5o+wpcBDlV1M0Bm6QEATUU+HMqkEQjGpWjwWxA+pYiom4m+b1/+19+m1GuPXstGo/Hkwk9TGK6EwtHI4HU17/89fMXz+PbAmHAjqeHFXdPkjx9BoGhyFuiZ0EyGlvKzBJ9Im2EB2GGARYIYQGvfPLJjX/2z/4pBfxAI+7ff8QofRtOrfDTCXecgXrA0wLIAM1gh4hpmUIEvOenLvGrT3/kbyc/nL3y6TQC4xhsJI9n9Y1fFQVRBQ8XlI74DsGgKH0SBNePDGoBueC6U6u02+k2QFYAPAVyK+httIzgA5gviM4U4AQ45kZF2BPcDFSLtQGae/Lub/KmP/2rf9Vtl2jOJ2iEMhsW0Fcn64Nw09gib6Yj+wlEBUTD1qC6e/cDq1UPJzby6WU5syQ12iwdHchBz0hVTUXpPkiCeAcKBVGKtY0NypL+jf/irzPK3/lv/0tCIPCdQsFgp9cmeE2kyatBhPRmkiv7T57sHz558dXX4skY00GZgmarTn1+1yFLzg/dBtS30S3SatDwUa21m03PGQHv4+1DSu6Uqyc/+PF73/z1HzHKX/0Pfu6g07/25cuReATuExRES+1KBs8MTMaGaROgBRQByGJde83muEy1Sy+AphY1at1ap9778Lc3nZ735V/YiM37WpWOE+z7KHsFF8/1kbH+d7/x3zHKX/vr/x7Bao4Gxf0Ojo9OCmV4EiBA4Hck8LI2iUTi6tWrX/3qlz/64N29vb1SuQIpjIAcQVmqei+KtBWZmvez2Rn2Q6Nao6EkpY5L5XKzBaum//3vv8Mo95v7Bv291RDhZxAtsdfEv2LLiSDb2cVsCUR6cnGeoG+e/WqK5RCMk0C+RsQ5SsS8aaPnwsKja/yo//PP/wp/9V//H/53c/NZDmY8ngnG/PT3CkfjdN+l4h7A1fLKNWRFKpE6Pt7bfnJ3b/s+SCDAI12naLvpD0ZbjQblX2GFJbILBu3fIwGmd2977x/9w39wdPxwOOj85Md3GeVX/i8XLcMTWwoozWErB5w8TELea3v6ctfVxvzcaLY46IGYr1fv96s+ygVl15KeQXtY6MgjOTIb1RZCjW7D04V75Osd2UPZmX1lZtTqdKujXmPwL/72FqO8sqAl5+Y4/fDJKrmDgO6bTaUINrQ6ddBR6kjBkCa+B5hIKX2DYgRjh6Qcvz8CMgbRAGkAjE0wGhAXUiKlAtkY9D4plKtP9iuuN/SDu0eM8jf/r7/IyhPCEfwyQVkU8U4OI3EdQrYIDcKH0O6RD8QLaJSFuATHhsxA3Jl2uhT/JgIg6sRBCBeVtaiPCCOI8CYZhzD+5L/5f/5fGOUsNgMcDL0Y0YKsFWk60HX4adyaTydeuHZp/dwcyPnm0Xar1Fp7ZeZnvvpVqpjmH71ryDalYQcerZw7Jvmv2bTr3bFC2IE6UMgIST7K5f/u3/n7/9F//J8wEheyFwUBq5mA1Ii4jeJq0aDo5iloNJADqE1MhTI27dg/dmunxWKvRzMPEZ6a4OkEzElBQ+gTKUX9EVkh+ZJgKz/S03ttZWkyyDR8wtfJv6Tm8e+EITtVM1NxORWCfBWaCChXSFIBxfIKlwAokbEgsEJystF5TRRoIygEIWI6CjKaY0bANhDSB5TdgXlLLwRDCYYphxHY2yoyf+DGxANow+qjHYCHxERZGjlBdewPKbP+aG8oHx4WKDHqk3xz8RmIJpVqudq1lmYj8F+no+zt7Mp7u8xIIBFIzIQvnL+Yjs7kTk9Oq6WWSL+yUMAkSKM/SF+BGAoqKgJCsgRznJK3qDWWnVd4BgFsi0ix9+7dO7T2Q5qD505H+fSrkPU8PNFw8ZKYhemvppP26duefnP227P3/JTK4RX0w9nrTz8kEsrCkBMxU6L2ZEhwr2xQgfajbgUwTfAFxQZPnRwF6BLsFgHNO4JAwfaFVwPoD/1NgNsi6iMeB16VUEIckKf3JFGciQgr2bNDB2YStfH84TRsjb4zMk1hETwVa7Sq6ZC7StS567RoatuGRtUZCa4OzDmP3eyKSBBMnmjY/8KVteWF7MrqCqrrb/wXYiRWjaCPYlPpirYUlIIQrFqRykBbaDaGRWUXQoTkmYmolVDu0FS85JkK0gr6icCh7lLLHHUDts5fMSVYIPwnHnRi94hR7Kj6zPUZI+jFzqFqueXpMWN0x6K3MQFRQTRgrQRLhQpAstSmkZSqz2nk/lHkwGdK7QJ91hwqxdUP++WTcmLFjAdjDrXMJ4ESglViDEpAVatsjUktV8wpQaemaDEWy3w2y80jX9hXdBahGeS0XyqLQRxO6DZZIVALERY2Ax+CnUgNGKh3iWScvXcq2kvTW/VsJ3OqRHxPJFny31TssH8m6zHdbtO7EQ/0dNeJMzndiXydbkry85oPHt/o1grnV9YV3U9NK94zjafyAeGoMbK5+wFzWKXuW/2YdDky7TiDVEO8dPk6zThIo6Z7VLF0yuYh1rewesGjBqok9dh0HohQKbperXrMTsyImY4GK8HQA5hwhIjoJzK9R6/bS2XPJX1JqrPajdaCoUdqeqUiao70zsveeMjbQjIqo8DYqnXHJOFGdEUbYzJ7afXYUdslKyTVZd8gkEj2KnWP3tNNuV8ts23VgBqKRqajhH1qNhYiPknWRYAkTAJttPCyJMg67KJgMCKYNiQtaL5IIgHtBItHbnbook2AU/a1aVWEwiDkQv0dUw+JTDLK2BIQddrVntRo1aajMLE8GiHrCa1GsJOIGk8vERob03qVHGgManQQbB60BGYNZVxYI6iLxNb6QmYI4wCPAz3jod0dG0SQBkSE6WyPnakZhIJg2oqP5ws2rCi1tL6W/eILK1q/8uT7NwmOU2Q4dOkF1wxTMvD8pUv9k3vt3KankR/L5ovz4Xn9ys3N4vZRnSi9KMEtJAflud2d7cOtg8L0vuEEo9gEP02QGRxyaCFqstE4hoK56nGo5+u3e+Saj5v1yulBhToawjEg/o2yJVRL5XST40hckidQTY2MNSqcLM4vUH/s8sX1s1EQOeLpRFyRc8JTif+E1SRe5SsXEurT76fbevpLXpzKR/727L2TTc9vEV7iFfFVXATDIRrpQeEqDWh+7qM7LdYsQoSKACwuySyubvgp7gx/A/Ox1Wt5vSFsDattVwYs2IByy/MZLAbcFX91SMeILiKGZrCPt5rzC/PTUSIzdGiFiDFanEuuXpoX3P9B++H9+75IsENdHKEcRZA3Fom+cv2lIEUhoJub5tbONo3VyM6DM0YcWyhSLjaDeAoY0sJ1mMzA2Xmezgkj8piT08x8sW/ELPE3XOLPJ67e9K74yo+ffv/TP/Lm6Y/Tz/zpt5mwy5C4QsWwmkQX2cYUFBe0MqHbxJ9hScGXpr4MZWZ4BXo/Jjxx2sngGARCzYivWE28RASYaHqz2Z8aSOITRKoHgV+JkqtstK7IuG6r4xC58NTXheYw7HtioSgf2aFqvdWB+gYv3g4YQm8QOtUdiCvUuEKxrS1lnruysTqXyiZDkGitUadcPOzSVX5yobj7onIMJS/5W1q1KHQq4DfYM6gb9ipbGguGB+MRpnMiZCEXyyEydrk7mmjC8hU5k/wJp1zYQxSTITHpqZ7JPjevBNj98OUx3fpYGzgik5liMM6NTg38oYMvO9TG8Nx9nO6R1KdUyCQ7S2qRaD0chT3j3HYD/uri5SiEAlzlSckDyrCLG+aCWQQhBqcKYjedOifJpiKZDJVDP1kcZoxhqguWq3QmNugMCzkbKh67jiA8dU4JwDebdR6MaL6PPpKmisdJq6uQ36gqEpUsp6OQgYp+E42zybGTtMmLbC5hF51ZNeIlHo73Tx5x8j9h97HS0IwxfBEsinV6uvW9737TpXhlrXru2evk+7KByCOcjrK5fZ8G2clEOpYMkp1x/+ET1C09TVjlVBKPbby7+zgajlJpqFLN61SXHAzL1bY/HrG9Idq7zc8l8RGKlQbJCANqI/ESrrgobgJxrEORzekoSSv8sv46TS+alBFMh0L0y7jbatzPtxXHt6TCvsIiGjcGFEw1IlRNtzrjAf6NlgxqdJAu9qFsgsCMw+444glmopSxhzdd3x2BlfiDVL8WoonLT1XeTi1Nme22RfqVHvBT4TcSDcm0PVH0AYxLv3+EKWR3x40irE4/rWZJaXI7FEfD3Elm0lSdoAkB3jN0eRaLan6n1FofKJH0wkFROExczC6XmOzJ4Wf+Jz8KC5M+RvgwyMOpK4lAgFjA66BdYlk8QoYjVpBAXOLcixdFhtbk4oyeHWt+fKpmELs4QchvUblYIt1gORv68gtL/lGtni/TbYNU6nopevHaz/jSK1Sip2StmVzdfbhp1cr5SlsVVCvPxTkzEtAebpeaHYaFrYGWoJC1c/i0EnAcIg1kDlk26UpkRlSLZuynQ3dANy14haTYQwedk0ZatX1YPum0a+HMKtquN+zTlILzSYsTUjFS6Qz8JiQRyYh721tpGiXGY3h3TxMnsMjYqfw70ak8NLwY8fVsQsVRn4hCHn7yzdmsTOdGTNjkmkwus3amncQ6CP7E9E/Ee1OzUaaMqYBFRn0zZpfTC2dVsoRhO78Qp2UKTuq47+tIkpH0zdKZrUYlmUaPHsazWYo04qomUnNeZxBJmOV6GTct4qcihSHHtMi5ZzyebzLK6rVZuHz9Zj+eDo+0Xrk/DJjJX/jKLyt+81//zm/DFO9SzbHVfu7qtUtf/9MhMyCeVpG/+Vu/VayU3Z//BYyT6fY5kyjiMUCYxMXEon6mTy2+8quzN02+4cfphDFXk40zmTYxk3zD1z/+w3/zu/+VX2E89qn5gZqhmIrYkRM++5AGAWJn87EY/JrrY9kAHFBxrjvAE+D8kMcOEw6bGuuTkdE8dExALkcioQlmiFKAHHnmmVHjRRD7OBvgphTdpYYQtSBILNb846GjKzrFF7FAbEFXCsvUyNKMZm9IVQm0gyaPsnOBlbX59XNr6UQU3LNaOCrR8oAzIdqJ0hUhNn1cnh/Ro2iOn17ClHnBpRoiOkUeFr4ME8RT4twIrcMsA16gOrDkRUYHVhPawuOju6BtgCugcOEbw+TB2B/LwhKcbEsxTijjH1hIK/CMvji+Ll1UhC+CSc7HYMryK4BdU4rqHmoJKrhjlAyHzgexEV6qRbV/SiqzCUiE83r7TdvIwLyjJinuociKmT4L2osEAapFAHehYyBuI8bAZCBODVkpUZpZ1MYBq+JxRJ6aGRDJ2UwJS0GZGWHP0f5JtGSkfCGFYOvVEgxCOlDAv8IbnY4i6qKNBiFTCoB9C2uXFWf7CV336fPyTs6bWDvhArKgYvMdH+7njg4mdMnF/y97fxrkSJred4K4AQfguG/EHZEReWdWVWZV19EnyWZLLTUlHiI5pERqqdGYaUda0ca0tjunrdnMzux8GM2MVufomJFEjniIpNgku9nV1dVdXXdW5Z0ZGZFxR+C+4Q44buzvgSOTLe2urb6uWXtXRyIQgL/ur7/vc/6f/8Mzoh9Xs15xUx3barLlBYTGzsQNnh3+IHhwB/+NpkY4nIxFlvAgKfcBSkkXq+OzfYDFwBf39h+32hUP0iQcogPf2+98TBQBPb0Y9dGvmhDi2OkbN4x2RFvOJLkQyiLoHk2tlDmKo2Urf3AfRrwMwX0a2rCPEiPD03fp/c12eFScOH2hIuWTTcOf8driNCUn/yCdO0kn+JPWcdBCFbN9OUFFFaVo9q6bcBqR9rgnSgu+XkszR1nNxKiOmGp1S7OdQrCj2tsG/OsYCE26gVuc8XRi1NEzARelrdhqrUoDNU6dLjNLy/bgOGbQn6ADBH9qCYf01iSXL97bzXVsAVpN4oaYozD54hfI3p85lfKD/8z9z8qbTaw8IfmIBIRYzQ7x6lgMAtclJgU+WGgkpfwMo1bWqTxcERv8Zx5zNUNtf58KpKkg0IIBTzYRvLYSU3qNab/jdTq7bB4iadIriDIdN1wyA7slvnIunMxWYWg3xtXOMBL2D7q1iMf30oWF2/Qd0HSpVED9de1vvffEHAysLSs4FQv32w3F7U9TdJm3Pjk9BYfpA2DbaYfhH+zTkbRaxhpMrCSX1o9P92gPaJ3SuQjCMam7xzrMJJLQ78aCiXq4Tm3GWb4MjS51v+Yoph8iaxUZOxc+87t9/g8TwWtxXLCwZpPy/E+84K8colZQURI4k43EFPJxQjfmJzHByCRBRUCdIuWhLHbaUiEfG7UOpmo6rqSTSrVp2D12eI0ok6eaU8CE2F3W6XKcFk/Uew5m0RIvjWJ9vixoeNxXKkRppKn4594McRcFGDGyxEPAxUkDAEQHfDPFSnX30bYUH8DbNhgkozFyPiQ2WPFwzGw/fqwGVBoGoI3QfsB2SU1RS4DBzO2yrDCphZ5ccTVmPVrklmWRzW/t2eKYq1jzfpkL84V82Hw9X40z2YAXxJt8ZPalH/zw/KTUJHabtAsja2al4ZZTygkxmUG2SsGfQDaZcbhFqXlCUtG5QBIws5VvxZeNRkOlcl/k2my582ywhwhNa50xeotzURprXp5sXGSr7AIY+XsBpwLgFNkVD4elmRC0yMwg1U70MQKQDvG0y6c6JivZheVzF9cXg0tpFyhrNlK5uE8pDWkUhWpkukYOqcZvnZ6emKMgCkVJWoAIu8e2MekkwYo6COL12tUycSQ2I44t7/F52cgzigMmHfGOZMWBId2E60lkAaUo4pa/MSMI/3m0QcYZUIXnJIkySw/KaqVWiegbkTV5BpxWfFdbgEaw2PtIZra9CH44LaBSh8kCnTF7EmxfQnulnc7EP/WEx7Qpp0suvpN5L+ghL9ve7gTJ7oMalWzWxKpSC0mxrYbPxyYWBDM+CozFsBpSsc8XAbRTwCDTgFuKT0Xdj6azthQSj712s9iHMgNEMtE9c5S7dz+FzFFVgtcv38hk17C7uWAxDp45VebHuCm0GsEYivNlNU0txDafbN8+2rt94fKltbXV3OHplJJ4G48mjGPI2qY2TTKoswM+QnItXtXTpRdIu+3xDWp09Oh10jRBt2n5wuHHn3wa9AdoI4eQNHodAivvvPPeQb5z7vK1mzevo54SERgtPViPd7ef/sG9ry+kI7/8Sz+ZTEXbWoEoqDmKNobsPJc/rBXsSvLquis8aOkVXxga+amLJ1CZ+HN6SrGXI3Sm6UBi73NHEM/DSp2aPN+KZ9y1OmvjKeQwHqtNtQcWlHA1Gh3DHN9v0Gw+IIlMjguXrtAgmMYNfegqR8OqYd8rw1suZSXVTt8V9Ol5+l0PLmbPJVUFzwPKPFh+aTYB/5MhFAFljzRO8mOO1BpNCBfyxXa+2psq7n63HvE5aEXMKDBcosww2iRbIg+DVcHEz5xwkZDUdEh0m3fQMuRTCSrzjMixEJIb2qm0bHmdfjo70EiJpBFPjOzr7GlgSBL5kaXCMVczFBZ1B2IXrC9GX6Kgc9rq1HMoD4/bplfatPab+kLJlQvhZEaKCVjvDEtjpnhMP/HEQ4GyVmvTiHDi0KvlUDR1cS3WfaqXSQLRAXdgFB/cNgdbpO5sak0Foz2Xn2CZx21fHqVhW8Y59bQrEa+9RtVDq3zYaI4C2XAWfsx0mDjbSMPrC3rJPtloPNczmpOxqrUoH+7p3dawLTB5QsKjZ6VAyCdRpejVZxpVRB9BBt4T+SgaQ7Tt7GMiWjHLUCSyc0Ux8WJWHCCZAP6TNczneUWoBuk2U/ncDk+fgDx2Lr4uxLwsdmQgDVABDATwVHBmx1Of3xWLQPUxyeVaDLKSCQohFNcKukGHzU9zd/10ePV4wyTyevVB16hhk5bLxWb3Q3PGkMjCBKPa4rHMKzdfffJo3wLJ53DkdblvXH8BukRq2kkD3rx5E72MNOEWmKU/86e/ijiarRkbnHJPnu5fvrB5YWuLe0DuAegn7Ua5CYc5yvOfcpPiCDJfIoOYLZFos5nhzBysPn7KWwiAmR7gFyZHaBvJPWDPzDQ3b7IWOeSD8mk59H6HBS0RIqgTQGRQnT1zvpkS/soq5/OSqqE+gogMi3+2vJl/ar+dmCdE9vEQxL+B5oGmZzgH2PIwy5Lwww+fCxpiPTwjGCkIzQC7GDrh0Rp2Bi2FCmO6aFH4S0TZwCQx/D5Xcnnl2oWLmeXVRHZl6nCenT0o5bWgz0uVzcGTe3Qor1Qa208e7+0fVerDdkvnBme3wsKg1wMD8walcYT/NBJsMebU4SobI7hwWOlKvz5xJ8ULmU0UM8r/RMPPatSJqwlxDwtsaHAmpDWdUsfsUJtoU3OUkUX3WYPoS/QNWVrcI0SGkzaX7H6pCvLBWM2MjaRcb+yyQs3gmg4kJEGclQJMHI5ZgI5tLXq5Ux1HNZsvrRLnQBCEXUlzFDr+kTAEj4FeVvC/YT/oj+CLOzs5HtAiiUdBfathnByfUHQsKgCXDR43suoIdYLCXJlDOIqgJCHF67GNfTDaTOzQA1JeilQxRznc3z8tnIV8oVqxcu36S+fPX4HTlVWAhBORItuOJTXbgzNvhsUg8empZW11xWl79dZH3/v4428+3Uk8ffS0r/fCIQ/MvDOICrtUVo05CmAZ6iRZKxBwMAG0Y3X6Bo7GsFjZqWs5KEoePnpAn6FzG8sz03tKF9Kz03wsvBL1e7/yI5+PqPDuYepp8PvVNYOExrDffPT4U6pU2+0WpzRHca5bLDnfy6/4H71//3vfbmdeiS3CIjEcuyJBLBgaW1iOm57+ILnlHKuuqqujP9WctG5dpE+jDe/FAjd2s0d41BNRIfgY2/RBu1nRlS74Jg+VZXNlNrDZYHVD24/H/p7Vcu/+6aNqy0pDDhtE+FFiZuTDrP0+6Ktzy9FV+B4TC35/GqoF2rVRRlauFLAJcG55hJQEnZWaNci1B6QqqgpJvGd7X4rUhTBC5l7wF7NNJ/uSnS5WNW8S/hKrDVBYIrwYDccBFAArwM6AKqAfxuOFrccX8LYK5dNOvyPyChpAnibU6c/awM/VDDaSezBMRtw3VsO+TrVYyvFRjIZjrqzVCdLdnVjV+cueQJTlhVzRqTEbwgIgReC+kDfcHVQqTYFbOD2dTiukRFPhEKXppE4c0+a49Kn5eBSfo6X1d4+OiS2x2sK2QUyxX1rZpF12q7Cn2gfHvdZ+o8xG7TdOeiPYGZOZzHoy5D23mPbYoUwvFyu5UumsS8gykaGpo65VsbACPnXz4jmIF81R2IGCP5DYoaSkZuAy1uFMd8gnWNOm6OMdAou8AyGbvM/yZkZnwUW+TVgGOSZClenmEYhvjpg25S51Sd0hGTmXj7731P5hCfD8NIzyRJTCRlsoaKcTGOS8Zwc1r+JeW4n3Jjp5l+QCrcOo1erEg/1IInbh6pX1tUuVQv79dz8MerREBN7i8Um53D6e+3/S5jiYDjtdyeiCc5xYjDvqpRP0xPLKyl/6hV8Ugx86LkoUaYo1k4CIAKINn//852lp8OmdewXxKjWdzGS/dXJ6FIuIJCwWcyShaVOAyOOOnh9z/THb6s+mSLb98w+w9n7g11nYi99h7KfucjTd29vDAk0mkzDHmBMsH/6Br1OtKTW14sZIpSQLF0UjZwcGyHiEWdEWwukH+RiFmgBB0EOEx0T7QA/Gw5DuotBzSUGisGX0O2x/CCXAm9D9d34vJL0QhSAf5LlMKYejJYobIqGxpav4pjQADkz82cX06sZCNkO4PkIxPcO2K4fE1X7/d/4pFGi/9Bd+KZUMLqezITWy8/SoO7BfuvpKOr5EL201GL5x7UWulsumpzSFoYTLPVK3JhnJcf6AnaEkXkqkU6H27vj0oeV8WPjVuNUZ+IIlKREHXGCq9VhhRN7EOwbsAG8T2C1MCDwvDJe5DahYMyK+QJRZnULlZOm6HX5RElRKYvSPNT7scCp+VwqMU4/ucK4QgRX7JASPLRWMMDFJwBi9hgkCIV1vWHokvRxiqdh0UI8FLppPVji1aemN3qJCVYKB0jGDIAx2qRBLilUJrWc3lzulPp9aSHb+zKcZgWUY4CZRQEiOGI9mdi8GetNB4xAnJatAnNDC5ijXz1+EHRVExIhOH59+/yy3/9K1V5ZSG3SVANGBmQeWE9nGxMBICK2P3atiqrHtPG7/hc0rzNu3v/v7208eHp8cWUhTpcL+cJwwPzMhG3u2NxlI7EL2LdsCCh+Hurx06fIlP10Umy2tWqctTn15OcM81Ool+viwTpg/qLEg63SLU9YZuUE/WbpaE4IZxPmLL16i/9Sb3/pdL0zetMBpNc17sUWnu7vFbOj8K1957cN//sHD7529fD7q6k2TqSD7sFWps5wHraH14dBesmVeUps2+o85baGFqb813ScTM7FEXb4oZaEOrWHYB46+Oh6seC0t++CkbK10zVEOaCUQCi9DTDax1XrTWtOgGRJIRdwGFrNqtycTyUqxsldqlPRaSYt87sXX0mqEMmNshbZexxnt6APagfNftSWPFN8TdEsiFcaOozWwOQo01mhcLCa2JW0V2ctYn2YuB5uJkk28Iz4JvMPnDcUjWeLPrESxJplmnq3MvUhOb4gq61hda2GBzewQllCPYJY5ylzNQA8Wcrte3ko5tVIxV6xJx3cDF2f/GDasoTcZTC1uhjPLSJAR7YChuu324QvQGq2z0xKMR9JwBRt7JoQIIVoMDUMSz31oAXCp26Z9kdAWy0ml/PjeQ63WSEXiWTWwCXyiP7HWqzajV6sctwe1Qv6Yjfv65qV2rbtf3D++bw+/ePOFmy9f3FqvVwv7Tw/0Vg/aTRoVXTi/ye5ptOsk/1masVCEqJF5S7LK0DIzsxzDTlSITIdEtbHpmFC0MR4AWTKxIafTRr0a8AepwTa/Lh+ZST9+ihCdmdz4ZbzHqWbqXT4424CkPeUTWKNuxIk6oY94IEhg1g5DfjQeHtIeuqn1y/rFCw7C761W/+Z1/0vXFL1ny65sxeLrwcR6MBDYHtQWMolzK9lEynewf9r7oCgLcXa0GsNsksREGHpIfGKpThdAJz1UEFd+uSQBGsoxe+oizrhoBDPhnX/ze793dlaIhCPnzi3SkCceiOT2D8CgI7eRwRi6+AzmKHKjs1vmi8/f4cXzX83XIu9nVeu84Lt8A0QibCxPHj/5zd/4rffee+9v/I2//rWvfY2kpPlF85zmCfkpYCui6bgaAFtEeYv7wh0IgmxGIjD7PMqG9qvQkHCnYyi1pGOr3QZl8qA/gpcWHjYcdlouECfG1qYOGgq9qtblUZoHmE5uguglXx/3OrQwhEiiZBtmaLbaKL+aTrz4+qsbl8/RF5OM69Mnj+7fv/cXf/HPeKmjdk8vnV/6N7/9nf/mv/ofEjFXlNbZS6uJ5dU3Pvd6OpWJcPVkoWH2mB3Mt9/rVVXgZFRL94m9wGgL8mZaO1u9+voLL3xJ+6BZ0zU6ydMJaebBYArAWiauDHdNdEx8siF8xygVYohu4oXYRjF30rC2hs55hTYeEj460VlmDJPIRcgaLigQjZYJiDjMQAWEpjJoG4I39CrBsb1h89vp6O0bh1H1GByg+kUM26WLGi53m44ajYlvU+kMJ+lY1rwXpIU0ZbBawh5XrWeAEG5p4AigALV53ZxCeBXFfZpOWDasMKQSywynGYrs1pnOPMOQgLxHNkiWiijC0NKH1Z5ngFXwjAWOxX1l8zx9bIMBb2/Y2X5aPDnee+n8zRdfeh2CHSQVbh59io3RMJ87Oz45Pbe0FlLssBk5vR4qGhCdaHZK54HJ4Nty/aeVcsrqEmsYkow5dz6B2Q55FLJIQUg9eu7FzGfObV6EfxP13kM59k7+1W/+OsEZkj16q8OAQX9U9SlL2QQPxEqybQr33yQei5wUqwQK4NiC+SydChN+PYuF2wBIZgdhR9s5y92Doz9948vXP9O/9Wt//N1y62Uaxy5aMMAtjQ7tSnRC5LWevTEJjp3+JeiKNb1ZSryWQKcY9q41Qt3HsFce99lStBB32xQLwNmhLajagnOZTBz00/vbls3s1lJ0oglTa1sfwWEADSZ1C3AJDehtFwzQMwvvYjevK54nQElsIAJYWkKq1PECNKNzwpQEX4eIJ5QqgBRXl1EzlnJptF0RHYCEnJniNOcJZaKL8UAC9iO0DY+YYI2VfOZYuLuAKZPxgb8NmcHih3qf7YWgFfMbUStZRxB2CeB8HWnti3MLRVQXMWvO2PyWgkHHSiTgGmkHT/dhhLLbSQVAxmGtD+j36Q6kE2ubl2kSVTs5FWKNIclZxus364Q726VqN7OQolsJ5gzCF9DbhC7qYsX0Z1bFQLg7ZqM9+v49pdu8HlEvxZUY7uG4oUEFN0m405HjqLd2dszCfD278uLqWm+x9/3t7Xu1w+oTd2tzy7K8gg1ClUIsZIepcTGzCvV1OtGnqx1wI8ArsKSH40HzlmYTIVYcclAEMR4KL1k1TAb/Wm1HJ6fgmba2zhHiQSTRg8iWpWjgmZph6mYyV/6ZTST/ICnwCITjZGZ6MxAPQfCEeg9oGcIXjCrGLgZWMusbGLDd+KDUKhcJiY+DUWCsBrS/0WD63Ipj83zCE9j0BNeHw2y9bC2fnlQqxvr6hY0Lnmi4Rwjk4ZNqtToPmzQa+UrFXdPJW/ZW17LkEXsI11kmHEHPMpB7FCkt/xfP1mYHdfr+B+//zu/81v7eASUr7WodzPdrN189d+5iKVeYXTjpWp+EVp8RTpjzZuoGXs/mizs3719+5Xj+GQbigFeOxOHR0fHX/+Drv/5rvw5dyt/81f8TsTsC9+aH+Yz5lec/OcdsZSKJuFwWKwp8FoKbnZs5FMUwsVCxEXP5wDxhJ+MxoFxRNljLbBxOlUwkaKmJ+4iBYGhdXkisCQaa51k4IVUjvAbSfRrxhXxwm5VL52Mpd7s7OM2FPc7OzmPYpgNr8ejmUjWubG4shFXQgQYNHV5+4XyjZT193DAaJ8fHhUc7p53R9ybC5eFMB5SVxaW/+qu/at4OBEhA9ohT046wA4SakKHF5Y1mgrb2+moCWVCHVU0fmpSjLB6UFLtXnLAZ2x5zIwReQwPSVdGG/a7Dx/OEtQgNRLPZeXBmZOsSqhjoU6C5alB1O+N9CVb16Uju6ind7+UymmosGb1Lo3gsAfUajoTXHrZafGPAiaAAcEbYe8yRID+FJY49QRixPy5mU/FoZMW8lw4ULLSod9ugF6obNFtD/0nSXxTLkPgTjqVzAPp6Sucu0t3igbLw0FukueAC4vox/BXK3Cg1AA1GTNTlCgZDfmPs1EfSWXd24FSf39wq5vNP93bVhRAebcuovvXuN89Odz/72Tei8VTPsJVK7TJUzO065vA773xzOY016u/2ysNG/sGj3O5JHUJUopV+P/Fz1x9/+1vn1s6vLi2TiqKcwByF6yIqrXgWPZ6MYcGNgZmf9SCsPmCA203Pvbv7dNr1+ZeXF15xOCO0qhwODnUtFwwnxIWagmIlaab4wyoC22CqfZ6Npex33/pmV68COJ/fS6PX8xldq3bv/u4LL1/+szs7td3GsD0+Om4mFyzxxUXoeeC2bBxWwIM091veqiMFwlLvRcOBkWfBsFcKuacttWlPpVSLq6uTrrCRhG3Sy6ceGq/MRXMwEO6Ehg8PCqmIj+RFICRBRjisw0E/1XgDOvbpzXDEFo4Gmy0yWMad3X0QdFdXAOoiFIYOVtYUlSz5fXYOmHtdmAIhuevR0olJM+8FnvywD/92KarGXRY3sGuhnqJ3LOfAosdmpPYOVnaJomGnY+2RsNPYsugeCRixlWcgSzTQeOD2hUKEd/Bs+24/QRdSAOYo88EWIv6E35V7tFco1Ih0+XyYUROA/IhmxU/ncv/eozsaxt/OATmgc5euOFXAXVzdulMNR6bWSETJ1S11vZ9VPeghwhDtLmy2YFqIDMxciJnMueJ1ZWLxRZ8tNAC6xgod2mhbZ+nWrW5fOGWcPLmwtnw+dS7i9es9yytrWedh4XHx8N6DO1evXiPYtJpOow3avRYds6RADSY9uxINxEDr97sDn9tr3hK6YyZ24QIGtSPwnlnojEmaks6BCJZiI4FPs+f4AwzE+P4iuOXgkaBleCpi6ctv6Hp55/j09LSQv3TpqoThZgfzjUdE0pVwI7ARr1f6NwJvB+Q86rjCMc+wW4n6+tk31K2LgCpY+o6l1ZVQAKUdd/nPOTzxidVdzR13tdHKatxtb5482a1FfGdnJLktheLcpb10cTEY8Wgjg27l5K+MkTYY0UvDkIsi3UdjV+QDtKhCFyYuxu7u9td//w/efvvtRr2Iv8biI4LVahFLsf367/wODd9Uj+/evUcBWOLtVg2h/u9zsOCYrNkhAUm4OD0KTWze/OM3//7f//vvvPPu8vLSP/rH/+Bzn/ucqAqUH+EuZtI8zFmdvaYGhn+tFsEmsWSxoWamgHySJcsXCQhgeGrNVjKm0HiPmhWiQ+wSsjjiIM1IVTHKqYUEJMAGwBGAmptEd7/bhw3NHBDrWZD9hqbX2zljWIJrezT6UytL9bNDokv3Kvnw0bFWNpznYxs/+cWxX1kIh46elNVp01rYv3X/3p2j5sgI0oknpAY21lLED5DrZ5WyXXG+dPMz06hqjoKawa2UbUxCXrwyvFuHLxAIeVfGhcN252G/P/RFCXaCzRHQFH4AywxXGM+Am5UMB2KcLeZwgW81ehqNFDmzgMdwiQjfzw5QBkw9XlRACYOb7090bO2Id4GcjbFb994+8TkCSV8W4Kc9EhgN6ihvvV+mAQuLA81id0JAJVvBDnCa6+AyJ/az7Up6a3nj/Mu1ytz7B6eHCvTi9Xkkpsn0ibtF2IiVzoPHjcKJF4OVtCP8aLJLuHRuASdL7gPrQK5SHil2AzcrRYDyZeLV/Do3mLptjd4wOC/f+aANt70ahI4MLMP06fHDsUV/9TNfGg29T3cL9MmeQogNwLqj37t3pH14ZpnmloJKq2Sf9hVkYjqevXDhPIb5o6eP7z+4f3pwcGFzDdfTnDGGxQqnpQ2GEBF1QiyQZ9dbOfCbijvy5pvv0sej1qh0OpNMyltv5vHHtGoe8JzV3WuiBsYh4posNljIKf8cT1x+NRGKZEZTSXM3evX5c6G5+8TSGllu7zxwBjwvv/aZj0tvtY3uwXF5yOZwEYKbRMA4BL1IZELFWnNK3aFzoDW/+1iJL4XTtCF7sdyplE51PTKikWk4lBgroWmka5R7PkzB2QHZe3Z1fX/n4L1PD1+8shYGAjcZNGmFPBmGQmpHh3ZY5BSNqildoOdouVz5dCdP+eJGNpwM0yFF4AB6f0CCgx5geKBouqCi0PAbz4jIljlKTE2vZDfQNBQXNGtVeNdDfoJqABfoPt+F0FtaNYKpGUyg3GN14Mn0yYgPh7SToD0MyxiVJsqGAWTdTCSFOLVJx0uqXp/J5LmaWY75p61ar00jAyvWG9EIMD0EEmgAqdc6ZyfV9qjxYLdAe4gbL7+EOPDH2EIu341XIAN+8P63nHDhOp2omSS9gceTQDg67BaxbZxSCCYBU/NY9w79HhEUNI2XtnZMk9avnOxZ1AtuF4TGLseod1Itlr1B7Ag8hFhyxTPNnx4/zu8/3Ly4FYUPeGpRAzECTdh9FGzD4d+uVSNLCyH6BATnuRkiwugfis8ZmY3APpHUPb4eMV1w65pGPwQFQj1KO+l8A8zG6xUH8E8OmbSZopKrZqNR4frmm9+OZ7OEIdho5r0AUkVukgBAijloXxyyL6wk4MLbP6hQQ9ztViIR+1euv9xtU3PZCCbVZDLWGwfblsspf4qoFdEu+kovbBDsDgdDlie3Hr7/yW48c3r5Uuw3f69WrEs8lCPkwIb1VXukEMEdjYTEEdlmoYdW99133n784CGrARNpeWk5GEnkz07e/OYf7+7uUw2AmQH4hLrdGzfJJQxrlfLX/83Xf/yrX84XKvuHx9itIOmNjmGOwk9TLjz/df5iplJF1DDvIkmwjRwkHv/ovT/8rd/419956zuNRvNzn/vsX/krv/Lu9999+PDhL//yL6PzCKehTMzj2ZOX30Q6iY8LJgwxOgu7SGGmzDV/RR6BoKtRX9Cu1UqFIbVnQH6R4wK/IiqJ9wV7gIs/k7Qkko9RFgmGeFcHqEdweSbXZJSQQvBKb3fPSi3qeZuAuRzT+5UC6Az6NHl8njDBkWZl/P7e8MH+iKqKr34277Itd5vqB5+4tW6USFRkOT/VDhuNQ8pEIW/1+S0edyKz8GMv3aRSTu5ErhY9j5sg8Cux4qX+xZZZWa/eKTQfPNE7/f3D3NXXloJwZYIwxRC0EHpyCE4ERCJ+Lr619I23kzulVJAKS+kcJzqY0spBvznPzYDKk/oUyVIGsBYptlKcQRIfxrhhKelUBbecA/cEqdCbUHtBwArOB4v0aKCom8hJkCYMbjvrEwZnLpenwjAkIM6lXxnpqw9PmnIngjWiLw0lxarWbhUJTXQJq5IiFmiqyDHUDvKDnKV0SyfEwt2gdTgrtSyyu7GQZW2IH0NUnz3ME+7XG/A8Arqircd8CSAN2S8XL5y/cuHiOw/e7aCcoRQmXx9Ujsr53gfvXrn4RjSZyp0UdKPFCodNoF7NWZy64hh0WDfjmN/ty6YXMguZzc1z5HDC8dj2wye5w4MnO08uPUtoE0hnVpt0ELAplVIZl4upL5cqfr/jzY+++4ffeLPWqGtEX5UYHZjoxLy+GDu3sjm2efTB5KRUBZGNnAC82e1TsxVot6mrR1hm+1Of1q9r3fl+0Uv95tmgU5+e0KP3aP/1i68sXl/du/9o0CT+FbY4PNXjM1wpJexX/CFQon3oeXuATqEB73XOtsu7jmAqc+WlyyvD9nHxuGRVhlOoPBs++mRc8PULbfO57O/uhpbWLF7/8Ull8DinDa20nwjDtjnoh6IJVhZJGjQ37VvyxUI8kYgn49z4fkVr9QYLMW8yjOtJe3se1IS2CAoV7P4g9l2rUYcxBLvHHGUjc9Hj8HUaOtwM0kvY6NFJglaI+Uq9WCj5JfAw8FEO5aH6cxCO+IAw8uw77TaRtZkRzxYQ05MYOKkvGnaBcGKRULuDMS88HLPj2bYZdeH7RCGwmaGbgeRFcUjjYYvT0rbZYpdfeuPF11Yf7dUKhXAsrNL8JR7FjJtGXT/2Mz8LDqB+upseuB/f30UKQwTKWWjPScfFGSBbLgJJx3BBwvJwYtC2kOePiCGkZExzu1UUtZ25dthaff0st9OderzRZCC50oEkmMfTKWlnj7uraWwfCjyJNDunASxZMGwEf+vlnGIfLb543TKeLwIYLvJ7p6RnM6l4Iham7kbXWuw2WojgyNDzA20RidNaSjYR24fNAU/LLNozS/uzTfiLWHDYjla49LFMr167HgjHqa5+1vsHMwJZOaR7iQQJPNP0YiAaTTYKBZ/qXlq2xiIbXmVxYdE/7JdUNR+Pp6KZK4RWBcTUPwHsHY0tWT3BzLkwSrFZOf3oTqvZ92x5G3/w9acPH3ewJszHEw+kUkvZ7e/uTN36oFPB2gQ+OJx0v/v227/9G7/G1qUjoB+1abN1uv2GThcfmg+qPLvBGEVsX1xb/bmf//l33/3uJ5/eoud8sVDY2d6VPsHErd0p1pw5yvOfpsR//ivzI9aKpLulOWOn1UGd/It/+S/ffvttegDzPlisX/zFXyAr8w//4f/yP/2d/wGFzYN9rlrmZxP5KYcUF86COGgEPEYepnxAYpusNGbc0mjA/cx1E/frOpGPApmaqgA86TsgxBWAmIZavToLoPEkgAl1JJrA45Tg22wMnp0QQrPKbc5YBpJ8v0OjEpNgHCnlaqVFziziUKyK5hgbcaS5zQFL/rVXLg0+vO3oOJMtx0uo0qa2RCMAd0AgIgQmOxMi/oNRbvuPvnHpP/x5cxgGFNVBvyVS8yMDX4UmFx3q7/uTvTPC/sS5CGRoNDXweFU2OjOJsDbFMloQvCzXC48ySR0R4SLHcZNxGVjX1D7O1QwlBlTA0ALKMw3QTBwqcOTVYHxCnU21oq0NwQfY79U1qw4OoCOQZAjTHeQd0c1gwEbheNQX8Q7o7ShICp41IY+RGlqNRjc/+rA2cIbMe4GdqNnyBFxO+IDhP4DqCaOM/D+Rc64KcwQ9Sga517c5u4KnZi2Qg4FyXyrjpLZ2ZpK6ydnA7UGonQyLpULEkEIoSkWeA80t5AvP1leWN1c2SpXCk5PHHRJOHmoAvOQ2j/NH/LKSOV8H4FortvWaRkDZOiDFM+y5jLHdpUQuLm6tb6ygzgJqALxAMpbxXPUlwlGj2wBWYd4LVWQuum6N29TXEYORbLbfx7x/+MH7x/v5c2tr6V5m9zBf1iYVjQY6VNCrP/UzfxH7bO/g4N0PP6UlOVVBLbqY9IEyIgktn95+GvDTrtizd1wEwWWOUn1qO7lDrHFqi49yvfxxvrj58hVPSLn7zrbWoJqKxGzsYPeMPM0KbB8Jt9bUpjqFwBaqhbHemeinH90Zt7QbX1j0E5A47Z1FhrYrdmqptFJby8+f/udevf7Rk1xycZ2k7Xvf+4gLJoiM9OvS/6tcw1KkIoAVRUS339Jy+Tz2ENgTivBrjWr7tFFpastplBy0JdZr166kM0vlRgtqho5Gu1Ce7NxjVn0qfN/URRD7AYpFai6dSNWa5Vt3tw9PzhSKw21Tn/T9dCwvrLzwwiYoNfJhNN8QL5bAL/sduATLGDT/qNesNvr0iJZwG83Ke4Fg2JyxuZrRqxUflgf9q2xd/Cm2BXW1SPJwNOxf2kpffNnqTyxf9CxtbZFSjURj2JXoJLquT8Lq1R/58aPtzEnnQ5vtKeF3Jmsnl9fEJqI+s4tDw/whVzhwUY1BE8sH1B7wUEDlnjGGvaN3epq99nLJ7sEfdEY8IBT2a82RdmwPxPRGc4NqXV2rnR0W2gj8icOvwM+FEmj2elTGkv18engQCPp7g3lK8/aj2x98+G5Hb794/cpXfvRHoN2hHbdl1AsFfJTtsV0JUFYatXgsTnNBeVQ2Kilh1BgAnEOTESclxCSQJipOKDvu9c9OT1FO2QW6YbOn5vJM5ld4GsZq2BGMOsNqBog7tGexUGptJZte3CR7OjJatNFOxKgqy1fOBvHsuq6ranAhvZIkoAnPwe7tw7HOJFsTkaPldCef63/nu9SWoODmo6BUgVYho4bUaDutfcIgNtvx6dHDDw9pMY7CABkF3CbgcXdalCVATABwMoJLUW+JbPvRH/mRtfX13/6d3y4WqjSH+PTWrUa9iUIlz4H2JMBrLgJ+IvFF3okml6HNF9gHwJXwFUrF8q2PPvnWN2g++41cLo+eQNzgKRaLxb/9t//2zu7TNz73+k/+5E+aZ5tpEXnJSeTnM9cGm4PICrJZQHxSPcI6xVbiM5RQ8DwnlAcSXQTsTz4C1JNDksoaHb8wEYgZQ+Yj7dmk7x3kC1HKOTqG3mvrXp8aDBCtnt+LezAmKtWQaKY0erLo9P+SDLjLArC5GsBsH/iw73yxADU0Iac9d3DsXUnmCTkrzgViUIrTWqioLWK+/VkLISnUCbscEHWVb9268kvze2Tv0fyIrCwXP7TqgHrB1ZSr9WxQ2X37jJrtz2QcpUJ+kCushRJMKnFqnEueKyEdnJ/793fpRnbt4ipzgGYU15mJEj2ExqQ8dS4C+uM2uVy60dJmG0/W7qQKZWTDSLU6ysNhbDhIjykvz/l7lAmSLHJC7QU5hY1gD/3WnAE7gVbECToBSifg3JJwGS1urpeqjtuPS9dvxsznRR1RsdYkwRhVPUuZVCDQ7QzRTaNSHW43SzIa9LgdtUYLEj7Uj5Rb0r0C9y6k8i0QaGzwaNCXDAfoVAdBnwAbUPIK6oNEspUNa46C9Um2qtloJmKxy0sXi4VcrVmdqhaFnYD264/3dz8929ttNdoobIw/OkMS6+uT5rb6AuHEwrkXV1bPkSnRaYKHZme5jCwuh5LJLg2G4efFhoTEMRld9mmjQbVp81//3jcU7+1q7bhw/OjlF25i+VIgHIqE7zwt5Nsn7G+atf36v/gtQEA+zJl4vFDtZVLEaVRsbMAQ7DVaETUp2g9mm9hwQo0xOzC/VddEH9ur9hO91Y99OLi+HAmqixdXi/tF7lihcjjeqx7Xq8dVSmXwOWDkoG6NyNJ4xOnJ1A12ds86o9qLV9SXI5MV2+hEc5Wpymi1bc/q/9LJaPSshgzJnlu7fO3ym+98QjtDQmU0NbPSwQRmGgd4KemWAF0Ze4kQR7FYgObHkUjQqrzeGfrbPcj7Uql0NBJdXVleXXc82d2lhyGKSsA4s4O2TJbJgDAZtZz8x+zdu7f99PDsuACNAZ3/NOmmQd9Ym61UpgFh6+L5VYb2+wG24OngzNOSmNIUoR/BiUEK1as1GrJRaRRUCTzOfaa5mkG1ACEHDiUVywJGgl8HNsIxoHXvwjIV4wgiGohycYRxMRMYQwJS7J7h0IvCXtgYWG4DkUeCN3StiMdAkljKMxEieNbPlBkhH/kivjtUj0CCMVpdS+EYUQ+kiCeyOKzmx9a+ojqDLnuxotXqVaJnywvLJJNqh/v3i/XCwK7GwvazHIALxeYEVA1FGne/d1ak8tWcuLe/9Qcwu+3t7zbzR43Tw0g01AchMB5vntuKJ9M4gwi4yskulRjphSVFZYac4B3tsGS4ewSVyS1QxUdFA2F17NC+1mjW6x99/BG0UzFI93CHzceD9CXR73WmEurKShbxjDrYvHwpk056/XaMei9Gn9fd7wfODusbGz6rLelWl50qQUtbPncw6BbOnlTtY3V5xVPaKVxad+2eVn//m6Q8UG/9mfCVYfDKB27pBzYmQNoT+cwjODg83Hn8uFmtkskAW0iOAqN46vJR3Mnmc5MoUlxtzQYn1RuvvwG04fr1l0ZXxr/zO797eLDPakCoCYGVBQrTeXrWvCPzp6lgiCKKsK7VcV8eP358C7rNjz6pV+tIQ9MH4gN8vkVRVrPFmvulX/pLECzypnzdtCmendTUW/wm0RYx6mcuLloGI57FJmEYyc2wcvC8EXA06gPPxNbsd5r5wnGn3HT7wyRAYBQlX4ADEIknLG5/kd48VCNTPTidEOZHrcyvX6gEJs6xQX4Ggdcots4tZ68uxNxDR3mcj3r0ctd6Mm1kSWC6RgH72PvJ4/1iqX1xuXt9HdzrtF5Zps512iGrIuUYs/6usHeGx47AeERxyXwUgrBUy/Q1QggTJ6nOBNah0YUOlbrsSr7c2p96Jl13JlSEik7TeweHx6YeRM2jbKhBUX3Gta0FMGbcNQEHwrrwmkgDc4GTPducLpYjgE2rEgFUQtOXAVWcFjhIQGCPBrXhmNh/xauFQyHCwJje1GMH3TGaCRFAwKcZTbv47y6nrwnVjtGHj4/I2Mq5Cw+326VyCzt4fi9Tm94bVjoG+OWRVgWmnYoFSbB4HA306NjokBFfpD6xkxffk5i6kx5QwK67g64OzgK+AKxOBTYeKafgXUEpuPqjoM0BXLtPz+PZQcYO/6hRb4f9xCiU9aXVxm6NXk2dLmlakAIYtoOGUeUcpKdBEtFdG6AdjIHZxOLWhUuplU3F5QE2zVRh4Ulei6uR6DYryIngM0cBkqfr3XJpr1a7DUjP7Vn0BXTF219Z24SDcuggSONSvOFwqnj7yQ7O8VA3cvtnlLMSs1SyCk3DUAJBogFjg2AdlYGHJ7BM4tgQMgqDPy5bigwUSevBlJrfBjHX11rTs0rtoGgtWd2pyPKV7CKLsVstR5eTzJRRbjQ1h6PdiySsLj9kUF7GqdfbEw8J+knhZHzgGZ5ftS9bHYHGaLdOpb+rFp2bmBS/BENKqd4glrW1kT3OFY+KmhuaBVBgECzOGqdCgMvigQMFQl6EBqE5MjTpTHb93CYxt7P6IJvwL4XixAWa7U44mspkFrPpxNOnTbpEz2eMht7ANOiRJ72DOZmQknn9AasDXgiNOwdSAfUnCbsOXQ3rzVKp5vN70AU8AVr6WMAIALFwU2mOPHbQx1a6TyE9hIjVQWbHHGW+1DyxpVJ9h+gqXirbB2OB2Cl59QAwKdsELF5iOp65TlKQxjdn5idQsYGtXYP0KORWMumF2w6PYXVWeyNDAFwWSvapXMfcE0EyO5qGjt/OwwVaiN1FQR8w5DAMM25bzRi0PUHD1pwIw8BAmUxBTOg9T8/mcfqCDb1rHTVhdHFCb0aOzalgFk2DASxb7pLIRqvXv3t0YI7SrhXphh3w2FvF3F2tTfNhvHhMXq8a0fpTEmKq1+G2DZrVQg1+RGiXUEKT8crSAll9v8fX0PqFepNIDVGQgabROG/nKQWj+rvvvhUMSSGFOQqEZqJL3LbsQkRrkUksvXJzK5skG5ms1Htg7gI+EEQStQ8nIgOLh/6krcp+sw0ISqtXcsvLdMBCJllahVPi2bfuFP71H+1VmzbVr4CNeQ6b8roszdJZxOuKhrKAxumwxYMHBXV6fEwdmVtQrR20OQIPFi8ibUDaqeUmIq+43efWN6LRCEGdz33uC/cf3CsW8sQqQTaxDqTOBl3/jAjEvCPToTG1AsYEtRH/z7/zd/+n//F/xu8xP4CcIFPAwa/PHZp4PParv/o3f+InvsYXOUwP5vkJZ58Un8Z8wXclZyZ5DTHdCVBJWA7qSSfBANFOCI9ZGGrQJLHfyNuHutcfG5BpHPZnUX/iRs5KU6fBJReA7Q9MGPUFOd5Mh8kozelQHYyXLCN7rx0ad6mPW7b3Xhh2m9u7l1ELub2i7kwu+n7s0kqkcHfcb2btXnu9DwPaMJuArA9kG+gXIBYzASaV0QSzZJNMR7Tofuvtt2QMrnNqkLOjGDLkB+2C+mfmoWecrgc9n9lSnYPmblE7LTjCjY9294pEBZGHquqv1msdndw2eNT2i5dj44FOiR5UYOLYWbhWHSC7ZmjPEYBtvY1LRuwIqgHqG5xOrzQ1RbiCKx0O97qNo3F/V7MGzhKL9Fk0KlaYc2BAm9h60xbMbAD77CCTyOQOiwpX2B9cemHT6krfvreDHf98kWEIYzsQ/+1MrA2iEP2Gu9qmI2TYY88kKByW+mTsXB+CBkpk2HsEHjTpdbQARjkzhHpotdpuByF/ECk8V8moi3tMRZc0oTdnzDLuEWejN2B/HDsoPC1DwwUdBPS60MlSAwFmsDeE69rllxLUgU5kdAReZi2zfGnr4tLSKj3QqEMQ1AH9RCXdwIwhzaSTtxTrPiO0RXbXKIopwhE/pGV4GoqY+OLSkroWk8a++qiDOUNrd4o3XFRzWy0BO0lPoKLToNPjnFg7OoQOg3r+8PDJJ+NBO5VK7B6UU8vnfUEPoPaWnjPvxb2qtE57BDFBgrgVIDlkgH3tqhEPG5gfepcSmVQQjnmPuwEWnMgBty2ZHcMNwYAb47wXpEi2qg3K1sMDtLKxlPBlQ4mXoLlpVve87C8Z6KCk+8Ixd29Y1zpwsrHOc6fFeCZOiYJBMRckQKMxFj9Vsuxn4jwYcNForF6vHx+fLC0tQttcLpWhbvd5hdJt++mu6zi3urocjcWh4SYNZN4LgJo+wUCo0GBxaNOjDxYkeoo3W50Wyjvk9oMzJK9AuT7pyctXrqYiIQjUCZZKhSE8zQR2rYKEIiIE0AXopT8U7DbalaqGKoLryBxlrma8Cxft+dpkpPm87qHoN1FrFPYEM1ZyR5ARUYYGmIG1Q7ZQkrL01KPTeKNS2blLD+1Gf7IQC1+6eu3po0/LgHKtuK0IcHYfukY+bBq4eNTA41gqoLhZXn40HjDMbifXrTwoP2qh2trtFOxT9LW1TFhUERpZA/KALWSiD1udZdoQhj2lgR6EocjrhyCwabRb9RqtdpE5xjPZvLayBF4UIhuLLwC+5eKlS0rAC7oFBrDdvcMXb76yuJAauJpef/D2o+Om0XUQOeOS2eb9bia2gNKD1gY0RjV/auciNCf9d0fCDGI7Oj6iXtScOAIXMJjBSPjJpydQklDbE0lsaobT2xnEI5Bl1bta/cn9E68Hnn+1XRseHdUXFkPV1iCRtC6mSGHnvKGRLbBeyHluP9z71jv36/jggDQmYyp/nzsEsbiL4Co9AujLC2ui3oN/a1jKlTFb/JTykgMTwT+lo2WXP7DJrIBfu7FRmHfVYBAjGcZCAi9nZ2esckLVGOH42hANQAs+Q0mYdyM/ebgcpjdz79693/hXv/GP/+E/QceYmmNmWIjhYP6H04I3e+HC1t/6W3/rp3/mp3HRkFY/qGM4IeueEz4fAAE5/wxCfHaW+d94m9WGPUL4EguJO6GZvQ1s7gQaxH7Qx+wL4oxrI5oGMh05ypp2YnazzGisLCkcYXGYHczK8tjm606vuoLZDsCokbtc9xVqC5DX0g+AnAKCsDUK38nBSFnyTlyjnocWvF5Po91ZcQVobj3aL+jWDgUnTIkoG+lfiNZyPNrd/Rd/7T82RyGcI5hkg8QYrQQN2sWieAEN7vUmQ1dk7GrtEj0YdTuTcr3V8UtZozMWpT2zAS4OCSlx2/EEXDWBDqIijmkyrzfO9Jze6T7N72GGmaN4bUGfL2wfgFEaTOiLbaXKrwkFLy4N3j99ssFqVhqjo/c62XMuj0q0eUy5exBGaouj0W6MRvi4KkvY09XcapIitu7Qd+vT4+One65xlx1qjgKSDT8Dyk4sGJAIyNlWe0iIDFh11D2lqS5PEqYkcOg0HCVT1e3BU0gaeEh3a7ow0gvZovhbFgf04ERBgQBI5M9mleoLD09DkrJyGBoF7O1u69Odj+7u3hEEpM2TjqQHQ601bME0S+IumU2OnX1gJpMuKOkRpRfo8+WFRbAn+LJSoAo+gvuZqRkeDS/QNJityBVzECwo4AhIQG6I6zPGjpo+2n77A3fvZCkcopJJGaNRvGXNsBnQyI/8VruPfQWopGto1ZoasxH6blTy9fKh1zWgkwKUonq7BXt8NBQ+3b9rjmLxhUCRpJMeFHBigy7RXudJ06W50j6P6rdQMEUHUCFTHgxhe6FQxucO9OsU7JOHtVSNJiR7wmQdUvq2od625is2GAcOSsVUtkmLZY82X8p3d3IBZSK4+HyTjBxqgGJELs1ipVZQJVnK8wcwPOOWtRI3w2hDnbDjhsPy0dHR0tJSLJ6olyrHp8CRAL6NB40Gkvj0rFwuI+fnMwZbtd6oDQxp4YwbCvteoUKn+DNUJ0kU1AmeEFKFh9KuNnKnZxBsoAcgHaRfsCSxkbw4g8B7hggK7PlJIAD1ghNMb7/fpXDCnLFnjnMolTx/ubK758dQsljbdaqRafTSgehyeeOcToU0EV6QrDSM9XnJLSMXuq3y7sNP2scHhZPa3kkxuLZ+7TNXjqlRL7eZJzIcEhaRGZP8pjkYfWPxsogFs81CCskLYs9wawJloNLQqVgc/uTy6mbq5Mmjcb0txWjTcSIZMloNx6AdAJzfbE6wspOKNmg4yAFRDjA0WOUUejsmsD5HzFEo1XbAIT+ZBNXQ0f6hS1Exm4u5p6fHp+Q58H5JYqFLu72Kiu9GiCmsHB/uFk9q4DIAbUxs6taNG4lU9GTSLR4ebd9/XOuMQullgheABS9ce90chYoB4KoELhvN3rk1uoGTPrqvRlc1LVM8vWcYBftk4PV4SemWcw0IgJeWyHt1wiEWVvuo2w6oQVKkueKTP/zm8b37jbFtGIoqBKWxihVyE6QSZsdAwRFiLfEreSU8V9XnBmrShgMLHxGGMLc3ACCQJjMaqN6+EHy5jH69pYPFIOlUa7c+evfD23dun5yezFSITSXEGQ4TBxOT+FlwhqGeKxhTzXz729/+l//i14Cy8CdEhkQo5qEw81GKcnvttc/8l//Vf/n6G6+x1AT+Jn+RTAuaZRZdmad5nmsasZpnooGlQcZgFmFjnYpZysXi95NSHsH4SYFLv2P34+MAF+aeGUoQffyLssWikEbLKEs+zq5gJwjez2WVhiJyqISOKg2l1rcqNne9G5hQKSjmqtFhlYiWzcKG0rEMNY2YedU6yCCTokpjQonjIDJ2G7GAJZkcFlqkDLk0YWURHgHHSPV1xpMy7ISzA7eORObQEwRmjgHAhTmmvVbj5PFeu1NunVRtTch9HdQRk94mXY2ZNigUyeWAmQLETKiQ9B/ANzhpm1Aq0hwnZvUPvPHj+pHLO4q+mrD8wQ7jEHYQQh4oDpzQYEHFZviccaeV9BPbyFHrUqfJAvCVdluFnXzsojuqrHgS4e6oxmzQcH04IfKFcUmDI99Rsxlw4gh67p98QumE8J6J/pADp5CniwAnrRF2WaIhwEu9VqeNasd9x28iFoZsp3ANu0SQO9yuNC4gQ2OXYoDptGb0qdfutLvYkDRlJ01EzSxmDNWUADvNURCxTm9w53g/t7en9Wog+DyQ1+ERkFDqGK6JK5ZMelR3DUgv0eERxYrIhfER7W0KpXQqiwsg+gQQGGW1qGhWJD/magY01Vxonj+3RRp7MiCODgsV8XpgUy2MhLbWLo0HpUqbhhwdxUfKU/pF08MH+sdRl5jiUJ9evLbed/l5UhjCuGgQZ3icFi5uOtJUJf75P/cXYh7HP7r/T7mdwUE7Gocu2MK5g2Nr1GLXAsNWH7BY4/La+vGgeFwpTCMhwjJwd5NpQ+a6w36cAux1eHw6xoQ8qtfv2DoXqxQ6heMBsZzyZJjrasFib1fwfbMDnouRXiw1qrXuynp2YynGdD3YLaJZRYW7nLVOC0Y+ooYg0OA5ZUOR3cCH4AUE7bgy2cVFel0XK+0PP3qgqET4lZOTCgAVJv/CpXPv733EMOTIAWHy7NoahVb4OE7Vh1HkGnYROEw0fVoEhctGI5gG0wfQHFKh+DF9VA3dUYiOTe1u9DDbkuAnmRaygGRYQup4CHJj7jPN1QwL9swS8J2/GS6eWAZ3h+0+9A/WiTOeTKXT6bqQaNmpDkEWIDxIjkl5ELRuWv/e/ae7Tw5RtpvJ2NqVC2tbm6VctVIp4WkjB9E0tC8gy27OGyEkYORav0dmjUQnPYHqgwnWj28h7m2N/YFYu13d3X56aWOr462VT/I0vgiqriTUQlPY1Xyg0fSp7RwFWf6QViIBrrksXvKedZzSWjn4rBTorFiLxSOU4rSHk6NSZaHdJQJGQ7CyM9fRW0Gfq3B22tfzS9lzTquz2ayd5mp46cV6Sa+Xot74aOIl6vzCzau3P37vaHs3BB/JxLG9vX14vAevW4L6q9mB6sSc7naMpazntddeBJVMuWzMR2eOR6VyORldwxSrNHOWYTsSgiuEeaAmHUGj1xuddHopkVp4/3vb3/3ewfYhKA+BzREFDfmVQCh4DZyF3fp7H9yScdw8YnaT5LSmY0e90j3aO86XygBicIh4Ol/58z+zvLJMQpXuAPV64zR3dnp02Oj2ISX++Padg0IRaFmlVMIIRH/IAkU+oAsE7kwd5dzSNHUMo5kGAT9/8Rf/4trq2v/6T/63d773DjVx4IbRIlzFM2Vj+dzn3iD5f+nKxT7hF9TGM2icqKMf8GD4xTyneXJQSuIViahFeYkHIhE4fBjZWQ5c7E4hH6anAghCmOw6EHbhRrbps062BgyZcDjb+Bh+q3hOeNVoKaocyfbgA3EKDtaWJR5qkO9ZSbYPyq2BvpCMQ7AVtYSH5RIVUhEK7+1KIRVWveqgcEJzdqsxCLiVVCKcVSITKgPWN2gJRmEi4GIytiCoWL8TtyvqjXzttZu/8ft/xCh0ffBFvQv+q7ie0O7hX/W7mIpaamlF8yr5Tpf6+WAokJWUBsCcEffUaNTawsQHb7cnHg+SMK83GwSfsHH73V7T2d019urW2jBLsTsTI4f0Uxpg9wNWHvldRNgVY6iB5nZa/D3dqNHsAOZO9imGy/s1bwIxbbht6qjZZN/1m9PaR4UEYQn7OBBV+9USEa1LaYduCcJwjP4G/GKOwgNBsvFQgFFQ6ewkCdSAvaSGeI77CfNQn0krOOD3dgxrCbs6HbBTkuHt9fQ8d0GBprATsEZ4oDjYMDiAAzaI3EpUE89rdmgY8trkrN4dYgoPA33DwD6uaE+7yEYDBlIFcVEsFIfOAQ+Vgj8T4k33gY9vffz5N75Awg4MBQuYCxUcDjYXiQRxCtE+Ev81R7m4ttVodZMRejBBZ8lMRUOp6MefPn3yNG/UET/KcaGI8BTZ73RSEFgy8qTnQcW6rfHH+/VzafhD61IyP3R6bD6QwNaJbh+2/XAUGvZMZMMcpXU0ckUskSWHfsammPQD9orf5d1wHTys3WxfheOx6IlWpe6Q3FIY8gnQvZRZkTqhnwPsVF33xDEgzOMpV/rkaEjlhqLqwnlFp9zY4aozU7NjhkYStkavY7S1lCJXZB+E6pJFFu5U9IxwCIHYBhkyGJSKJRBJODQYkVTRomwIZJYq5UA4gA4jRWIfOdrFJqAmLES4kIjemKMQ6YSBDtQcYTePbaIqIeJAxKVzTXJD7A2ix4CJxKwEfp7JZuDDB12lE7dx2OGdJYOBqci4vEZM4W+iYzgz25ylgzVpjjL/B1j1fs+n1ZtfTGVsyh7ld9idIG6zm+cwl0b5UqV2lkgvsDGkksvrRW0iGx0utdEZtdg5QdVDa4rReGV19XjlrNasX7l8+eqL13mWDx9u79x9bNFlOBZ6m/j4cBB2KMAlcg0dWR3yeugI0K2d2RX7+nLmwdvfaQ6nK5cuWTy+490n+ULJlw7BNESHvPpE0W3eZG3g1ttpxdWiC5Ez4gc/qFC7O1WD8wyQP7XSs47dviAlLTRZGgy6N964USiVmr1uu7eNQOzAFDyQ2pN6s0Zsdnf3ZGNjZWg16kbLFQy9eOHyx999U6/sffrwTl8fpjKLiLtieV8Fxb24SZGTOXF+9h/+lsO9uZoNqOmpK0h0XaGiJzqKBQ7tVr0EZsSb8CtBrVXVK5XT/WGtiUnXj8eX/9xP/bhlnCsUjZMSiU8hwESg9ai8xMbHVRwOlxJ+cxRqeCUjAlTNquB/Uaeo+IU+C7fB43OV2+Xvf/Rhsd5YWVr+0o//WYq+3/rOm+QAYWZB1hsnZ/e3d5DMPHu2o+leVmpVLLtUOsUawoDNzaLNfJjD1AesJ4QUi+nPfu3PvnLj5e9//93f/d3f5We1UuOSzM/w4ZWV1a2tLdb3rDLKvNj5z+en+rfe5btgKvBBBAQAHJjACmEStA78jqxL/A3S225PKFgvnPrp/GLxopzrmh5QtICHZJ+DfqwOt1cEBEF5Qq3kn4WqCzAMtujAMuiYw7lQ1ZlM4fBIWU4XAaVs3Rj47c1Hn6xoWmzi9GiWQWtyJ+TaVR2fiWdtdIBt1rBH4naKGomcuWgVR81V1znsgDW0W86QInZLEr1YrjiXwv/3//S/MNWMX40qXpUYBa4ktdBS3jMd09hj4PLSVaTVqMShzgyonlDYGDWa7YbWlrgzeAEgzCTY41HARq4enF12vCiNSpE819GoVnqooq43N/czEOhQ+TnFXEb0OEhXjFx9oiiwwGByi2NBa7WhBb+gdTwxdjzBC4pRaHX3a5a+Szto6Cd5sqeI4tz+XkPTvcnlZWe+GFy+1yLHbTwvnIRTBGkRUGmHZYUbq9UjtA6SiZ5rtsbQUiZjOYZo1ZOKeur0pBlZ/WTwKdGxgnv0dehICuLY40C0oSdE7ANzxcGc9VbjNTLBfC4dcgzNHlq7q/dtLSoHQQSS3tDIVYJABDLesOP0gwBHe0yBgdCOj5YEYKTvPXwAw+bFy5e9furbUJszVKIY2vJ3OYhCirc9f/5UDwKXiCdjwHeDYRLRrC/aArlGtHsgVuXGx6IspgtZaKtdp6tpOr0Yji8ODWvXaJIYDSiu3WJDoNqkxdmLY0skyl74ar1p1Itlcwz81IQl3DkcUoPt3/A3HMNpHRCedRgf54YnC35/KpSMpddZ1ONmt3ywM62c2Ee6yxN0K2q32bfBpVLV+0295bC5VqMXN4PWfqdfqk9KfUfQGsXlnh0Bp03rThPJ5HSYm/Z1oimRgOOzNxaenDZFnE/ht3IOdICzSHzhQQCvRwSoo5GX0nm4wn7WatHGNBBRtWaT5kaEwZAl4ZjKNsIcNUehJVMXhxKQF4BgKku5+HSqP7a1jH6+WiWGhkRC2nuc9ksbay9ev0pQVGsTpO8IkYwCXAkPk/w/OttHXBt4hkAy4LISQhphtTBHmasZjBXDArxrurSUMCp5ocbr6enzW8HljYHNQ0s5BCTmY68DNrgcpvCfNsOV8mk+R5Rx4dwSbg5JfYzKF196CcBhPBL5i3/5lzYuXYSPqNZs/9O/97/883/ytxkPTKCQoU2soBvJJGhjB6BRQsShYd+DmOg2ph1nBretXTx42NJBbBDbH1qOy+1xKr1TanuWExvLy8fvv6+N+i9/8ebWhbWhVSV1CTkVho1TjGM57t++NR52gNM5sXHb1Qf3PrFPOhSWAiSvN2p7e/v4V/GIgwKFwxOQ0GlMOSQV+JP+pNgZDFr1MiS+lLeKkeeg5SWe7oBwI50fMwuLkno0Dx6A1ZWIBdtd3927u5mUh2SNpedJxuPh6Lreb/umFXpWjPq0+NuaWPY//mj78KxP+Obn/9Il6h5uv3/v7r3Tag3ncAgPjfCuwqU6mL764rnlhGVj46o5CNQ2YtahIkg4OyeLSzHEQf5QG7R7Fr+Flr3ffudff+NNpIA/Fkok4ymIMgkl0BoALY4t4fcotGtltYkbgL5ShBx4aW0tEU/Q8gh3cHv7CQM9TwXx2lQkxGR5TcHXz/7cX/jSj34Rn+bX/uWvf+ettwFQmhHQb37zm7du3Xr19c/Al4T+MK/WVDCcwTzJ8zfNF4TseUyUppJUBNiDaEBfSsQGLuUZvAFeJH96od+lDVUxgDghQ0ZWajIM2gHIEiRwWb102yXuDy4I1ANyG3pgN+RarFU6MJujqJ3x7sn2pNaeNrpWvRvxgJnRFfz5WplEw2Ts2w54f8vZzJ2VHpxqX9lc9EM0b2cVu53bh9Wzag9I73BKcIF8w9Ab/rjTLPdH/8frL7zyUqoOH8az8ky3gvPskfpjFh3TN6uKD4Z8pH2bhdq1RapTvBD57ZN0ZkdipnY6JDRjkTA56c2FiM/npHSW8qmhu1vUK0tkPu2tWqcZmai9k2HtWccRdCgTgCwC4EnsYDjuKE5611kIJBA6RLTOZCzj4+o5incHgbJO2ee0Qi5GV4hEWcd0iLT3tKkQAU5VZ89raaeGTz5pWJ1LCyDQzBkDUQPdNVE0r8dTJoRBFEZKuIXxE+8TOcsOQG+MAhYsVhr0UatHA2dcPZfV/tpLl20eUsu5VruLFYHji+XOYkU39eFmkjU3XxtQINoBhlKUXy6Bk7N7bWN60docbs4IMI4cWxdIi2vUngjSTCIn7D/4PqHtHN9/9AA+/0uXz1ODyDWLNyPODEyfAA1NNTMXzb/+r36PUGIgFAuFE2995906WSSrIxThei3hSJTIPCYdWwFQBtNKgfny8jJ3ee3qeact8tGdB4q99YUvfKZdfWh0FcqIvcHwsju4vHaORODp2b5FUc0ZCy7GLSElCcPIqOnZTNDmqf6wvPfdoms1XG61IlP7YFwch5ZYsxYy29l1dyzispYpqByWOq2nu82TRqvR8wZDy1fWPH4rdFC9chvnFLyfpWdpBebmcr1UGNicNA5is1CDQiMl+tdBjBT2OeBe1nWpoe3O2qtjIWL2YyiyDslTELbCwWB3wX2pt9pkBmFNxmtmlyHYHXYdNmdYy817MYYdtAzZfH9ACVLpHY5TeHf1YiiZSX569161VMVbIs+yspC+fvl8MhmmeIiFQe8gSpcx0vrTbohSfWlRj6MkYTaeN4EKkcisvWfqf65mmsYUW+Nnr62vbWWSKwsHWxfarcbK1pYUKIym/iC9mAXeH7TajPzZk8ePqFWmv2W5VnJH/M6pBys1ll4GaUrVxo/+yBvaKzciyTiEONAA0y/laz/7k6aa6fQkcBQkv+NRSuUq/ekIV0H+lASogFVfODnau7fos6YjanfSOigbLluMyatQ0OKJthyRrVSicu+95UF5Jew19u4mUwH/SqwDZTzUOiPp1mxO3Eo29fDO+1qhTam1prVHPfW73yuhseHTIPiRyx2notlOd0CtYofIOP0YBkYpd4KLNiER1quVa8PEQtwXpC1FNOBSqGSkO4XC7goGVjfWeKLmKJmMWqk2CxW90srvHIzeeGXp4lYEm+zMkE6YLc0WSwMQc+MyOybDTPozbc26+7/fcfkDV66stCq7lXLd6Q8vbyhnB3meDVz3LI8Xr2a/8Pp62G0zXHNvRkIbAFUFRIGbwY6iuw0RamF3iMTDGy+sXet3a1Q217RSofJg55CpiKtJvAK34sWmRJVgTyKIpeoPC9Nqu3z9+jIoFChnCW6Mhl//+h9yO7gv5k3x87mq4DWLD6M5FAn95M/85GtvvPbtb775r37jN27d+qTV1PCZ/v4/+AcXLp2HARxx8INff/7633mBGQBDBAFxnhOAJBwRHBqR0pjBmD2zfI7hwINe1oaYmxoGRBgiLxvt1Xuz3rWxqS9ZadHmkaC5g67EZCeZFp+b/LAVcllzOFqYnlSOh+1OodkgrOD68N7LHnecJoJ+pQ6WPh3JG85iu4zjWK737o8GK4uLzuVFePiUqkGrkczFLdfK0ur5jFOzvFeuHv/eb7gRiRevX/7a57//ye1cS1w6jt2d3ZkjZ48kPUKBjUk/MMh8Xl+57GnnSZWno8EOdO9HdeJ/yFw8BmoL0AaeaT/hs6phb67Ve3p41HKUtVEz1jiZ+An/iXCYeixDjzmIMH1ARUWCaGIwGRaXrBLPcEoQDvA8AQknKEvcXQLPrB6W9CdP9pJqMOpyGVZbheRPKFbrDnVJplf7FqB6TjpFecb1yMTw+xeZfHOYUMAvpZhgj/CSXOJiIK5wGVkTaBcMVWKTvc4QCvaQn79TgyC8BhQ5FesawuiVa1deeWHrzbc/PDgudbH2SEqjnVheXBmg6WdqBohNwDldCvlinuz2w6eqO65G4mDMCPBTWE59aywRI1LaKrewdEiIWb0SrMNiho4E+tCj4inwgYtbm0uLy7wL1Ey8GXxhFiyW3zPjT+8IGuDu3SfG4BGFljZrl8heo9Kz0E9t4qWJsqwz2Urs6s7q6irhWUyybq+xspihzLFdOaNNPGwUaz/2p/hYNBRDx1erjQ8/+gTNtLN3ZM7Yr/zkz4y9wSeHHzw4yJFoVvv+xFKyd7N78I4WsU2XX1S07vHO48NGTidYn9raDCY8fUurmyuXvrff3NHB56aWF5OXMqDUio8Pq4dN2mzBGNVXCBJPi+35ZgSLMIGS2a96ySdHk1G/s9MowRiWiqitoQ7YWxIP3u6EDt00lGIrSfKfF8K0ytoAjg9oS3rPdLs4BvAkspeD4TA0SezEzeVFy6eymOlhJxVO5G0UVygYBGUleBCXezGdAidNvJ04KYmZVCIBlxodx4gPkXdpU2QvJgWVmwA9JK9KJgaIBjYxpgWqX2BiUhH1byPNyAzBI3VxLQE5FwL22he+hD1LUJl8GyBtDkkCykO1hqMxEMqlXH7iC1qzWJVwtNNHzpddW40mExgLWJk9wmmSXSeijs2PozDfN0g9Kp1dLqVQbZ5CZmD0x27PUpzMq6Pc7UTsA3oBSTEemtoyTDvs/smgrnqa1GV3qovBZPX7b8dItmWD3hAGrV6//TEci0o0A2YEiTOLJckyOH/9lcWV5e0HtwrHT4wOqZEAhR3FfEkgmPQCatUq0OEO6dPu77Qah7uHigJ2GUhImuAbFaJNoH396f2HJ9UGdP32LpDtWmEAsc6F83TvYXGbR4AWSFbVqvX9fvq4eqqaPV+3pgLAo+Eq2gN2CSrb56V0wH5crsWbWipCpN5Lf0KtdZCMehaWVi5eqO8dtloVwnrQ3kyuXVr+yo98gb4y9+9+agnMXVrYOIii4ovA64AqJhnfZu+zmOyWxRX44fwRmzeVCTdaenYlCTAGSL6WJ1fhpJ1zuVjGWQ7S/ikUgendbh1SPg3+GGcCb0MWk1SGm8dcT7BSOeZv8YKVIu6UzG4sHvsPfuE/+OKXvvDWW28TRrt79z5WkrTLEiX1g+6QfJsFM3Np+JMc5gmJi5HZE6oKmG9RMjNeEEwgnhw5ROqUGBjXfUK7tXBkPOm1ahqPjuAvWSgJS1mtNG7CvgGCaRU88QSuPUh3qCnye9xg5M1R6LoeSsQJVFfaLWM4yLnGq+PAmj60NfWuY+TIRKv+wKg48pPTdjrPxqPlr/2ZyFLmk/Jxl307Gq6HQpmFhcW1rZO3bt8rP46piRWHSl1q5FvfL1qtQeccZ1gqnJbz9WG/s3Y+UWvQUg9Ryfbur8WXzq1mjh8ct7u6NxgJeG0hn6NMDGjWcNBjMRKqI6lCIO0Ad1Udnha1slWhGHl/YbJIov60UWha6PEyN5jclhi3jqqHOLE3bEFLi7VjtfjxnehjKZtL2nFCNwWtFG3EashnrCqtD6dSB7PIr/gm8Lq56Fe0Nmyekg0vNDuNTjO91lu9TiBw/vRfefkGQchBt92pV9YTvo4y9cEDyg5EmU2tQTVMUVZlgl0LOhcsE+x5FqJqZ8Vmudnb2T09t7F4/YUL6yuLOu4IhYi0H/H5COpgU+CqErYwnwtMJraJsRDz2+1+o97sdO3DuoCBopkEdR7BUDAQDIIgKJcKXd0Avk3GzeajHGjq8Dms+I19S6PX+vTh3baur6yuU0nNGsO8x96a5WnmMQY4cyisxR43qk0yIyCWdJ0+MUIECS4UkYYoQC9xIA15kwAym0DTa5Bvff7zn1leXyudVZcy6x4Vgjo/AFSCB7F4nMSwy+n5jd/8XfNefPWHSid7AtLC4ra3e9qxTjrHFwtPrNpo0m4Iyb7j+Cz36HEj6FRSJ6WFpYDqbo0LNcspcBI1cjG1sJhol88gEu02RlNuW3JOVOa7qt3+cWvuZ3D15bpBHpX8X6XWXYqv4kxHqLd01E+paCKBxS5z00gV+HgPWTtzaKhj6RNYltfsO0A1ZGF7ADR0aN61Ws0GPB7089SKZ27ei5BDh2BKECgVW7EHvR6hFSu5pLHf557GApLQ9XoR7P0xBBOAPa10F2XuRANJnT+hY+qWBIUu2oJUC3UuZIyEtNPeE9y8HHNvZu+0tgEiBc8E+0GeA564iCLrzMME5oFRQYaW54Q3jBON8qQ5IIxMCDweM88km82G4gkurlkn290hCESBG6k6lKyQQc4OvquCeLA4zxrl9tCSWd74sa9+5bNf+FypUCIot33rg5El4I4sFOtlABkheNdctsqoTzoH0nVbMx+xGnQd6kzHJI589GGvN8ZHh1lAiEKcxFjmICTlhqnFVTUW37kTvv/x98u0pXFWoVIk4EMMjYQO1fLFgiWXQ6EN6W8q6T29gSzj3lqsRdLOwKPpFDWydBqVegnCaiW5vAWcBd46B/tvdpzmKXfyBh0jgh3htZA/4sw1atAZvbCxZR0R1QAQMqQxRJNOHlY6skWoSsaIYH8dHlbOb6zaUWbl3PFTnZR8KOxbiwRvXr4IB5097Fu/um71L5ujSDsF3HvJlpP0ptIAg4W8yxDViJM7Fd9UQic8xSC89B5PJBY46hUJTaVijoiazJVcNWjJya4Jknx85doVogS8Emp3pP2zxKloA9TFTME81wq8xayaUTT+wXrkHb87VQAAwP1JREFUSGXS/4df+ct/+qt/6uDgYH19IxwJ4Ro//wrXbGop8525xhKzWA5WPPtWIh7ifSLkKJhAreBY00VsZpWK2CTriDDDbiJKJgR0dGC3+8KawJz6kMZQcUXanKAMNjaWMnyFln7bC7Lg2b20e8I/EYB1Q4i6oEEbWtRYvaHhLZzLJIoO99MHO3GX52Y48dgxLWpG3eWPu4KuRGpwcZmAJyiDnbfe++Pf/B2XYTuwdz67vpno2d/OP3jqdgSW1xJbG+a9QP0cpB1BZwSMMUThhS3q9fj2zvbrhh61+fs291GpvqpEeC5Jv7XktVFPkVSdiel0a5W6BXeX9hCgnQPg34ZRDw0jxi2jDoeSR4Wux9mvNcxRQNNjK+JPU4GLNCRsZoxrwBeFdUbTMBVFVGLUS/AOT4nqPNC3sDx0iNpvLawAyQInQ8DR4QURlzVo42utOC6519cXQkEfcCpzlJe2FkA/tWrWhhMSJKoXYoCwC5VGudbC4X75M59Vw6EHD+7/we/9kdEfYvRSBHSYL55WdOqEgNuc5kpXXrhw9cUX0muX4Z1HuKNpGvU6ndF4hC2t84/+uXjM1MPBgAMJAhnlKxe3DvYr208Ow9FABjs5kfDQlMkD5ywZG4GNeVx004U9isDgxB3Cj5MEHhkbLuDB3uOK1r6wdUlVSAYL1Ax1g8A17+Xc2lKtDm4oCM+UAbzaOgqpy+B0yBeAS2WZZDIZKktYma1mC0NLqDxs0+xCGug1wZ5MKkU4KhGPYwRRAkkROeX0xO8e79xNJ5O2Z/m/Jwe5eHBEsNVjT1h7Xar8jNNp47C1tejbtHhGFk+rP2oY0/bIqg8HJ4/26mXvlbTbQ+29276wBflYoHF8Vn161u+QbqXFH3E8IIUTKNP2u3ZNCjPEzrA7VRrYQIhMSTWVSSeF4sUMfAu0oe5gZ5AFcXlYadRpTl3ExLoG5LzS/BR5wASCjYR3aDAChwFZFnZHIkUDeBs+TcQZB7FFVs+cMcwtyAUAtSAWYKoYEI2m4TGM3qQSUJ7DDrICCxUAGSYlrYQQC+RggvRBBlHd77ENpQiPYyZ/wXzIs0b7T+kKgYcsv3LM/4GJ52vnfSQzxAqlZoEnB0HRiHsR4kjUA48TnwjOtWqxQPnThF+MYavZAFeOO3MNQoNUyuUPdjo6J4AxW2D2xOqERncEkbo5GHsC4ASFIO3+aHXz0n/4V//a5WvngRamY0k4Sh/fvPHo/r1iZxQ7t0hvoEqjCGbAE0t7EdVnZ+OYz7kQG9B9TfG1HMpJFwasdvSkGDoPZMNkAp/bgCcPPqiGo4vnNl9540eWsyv33nvz6OEtipm5J2os2F103EXyNeDSoGWhDYi3jmHYbmAMImRY0Ug6HtYUTmglqERScG1ndbuyvbvrC2TTmXPmveiDYTpMBGxV1hlNEIBOsu/HlioFOgVkYTgcJDtCl1WPW/U1jdFJYaz3R3B+7u126tdGWJX9Tg9vyRsOodlhSV25/jkQcaWTT4bj7uXz1+czNstg8EhmQh65YKXzCm5iRHqYO6h0BaYEqEECMhhFtPt1Onyqy+8LJJao8pqoK76T02qDkGG141X9l66CjArhbaINCG2wGsxRRJnMx8MGmr8035upHvk41jq7ga9QskNeMZ6I4xpz8Gn5zLMv8fW5dpmfUDIX5ktRlX0SOZJtkBA5NULsJ7kGEIksTYwb4F2sb2IBvjFtNKAyn0wpKZj4xjD22Y0BlHdATdkhgoFgRkgDTKH14pSUdcxH2c2f0jw7nVk8f/VqqVTxGl3fxuZX/qNfBivljATfeft73Yf/9Sux9Au091I9f3Cy9+TkLJldbAIdVVzxy1uZtRXro4OOe9KD1XgwOpcgiW/t5AfV6ytf/pW/sv76a+a97DUes76dfs/Uax+0EHY0mgV95GwOOnt1AyYAbJtkeuDHKjAqDt84uhi8ci4SKfZXFyG/s0271ZR/fDgZgKcJhIntOKrDKrcN3mqiW/zJCPwPDIRnTI8Yuw1IhETDSSiANJZV3PVSeoPeJm4+gaINcUcc3u7tdApavcBWVSMx6gZBwnbGdH2n5dP+1ObtZhLRN7Ke2BhECZxtpITNeykfbYttCX1cmEoAN+aIP9wLUJ8ZUPSR99KVq0tr64Ca3vzDNyulOll+RqIPY9sQhuBmQ6+Uathw8dTyKi2gXCruPrKDAwMX8FmxNE+bky9E6WP2srUoUlxdTgsk3TL2e91YHjAJwY9aqZXbwEet7uXFFSIHe8d7pSZE4za7T2jmKeV0UiUywUA87bQ7ly9cYkljayOsZmTFcjfXL58jw0+5Xp425noP5nLrqEefqvvbh4SeCe8QBkBhk/HmBfgdWlp3jCaM42hoAFeMHo9HT04KOzs7GxvnejBknhyl4nE4ah9arc2SPBSOk7Lu8keJ6WsHtXjGiWte7wHQ6ayEI2GLQlua40KjO56EEz4s91qumgyBLVQblVYsnU4sxLSdw9YZLY0FACyoB+pSwO8Z1sPxuGqxhVfU/ENxAVnk2Wza5VlGI04sWl2vW2xxdmexXof9HmgfxDCCsxPk3ZjiCnx6Asr0oyBoATuAdAwSWS77GdnUbelq2L+wuJjJLg5qOapGZ7eCmJ5QnYQ1Kx3MBoMG9bMDqQGgiEGeIw4KkZaRCwWEHiIWJxYqEhKlD6cveErOwpbHO5wpGATCzB4lgSowQ0xJc5Rn2sZmWwxKwgaRMVsl9B2gBIwKMMI/tBwQL6ZerZRyZ/ReRbiRYzw5PD07zZE2uHL1wvq5c1jceDnEqVuNJkB45oj/JK89nd8P44Gc4QJrLSAl7h/701+9duUqEFbEI67RyvLyymr6xo1rb735/f2dnYV02ru+vHt44vZFJrn6uKu1lNE0s+gA0zWw1PRxUZsenNUCpd76zc9nIzHbZEBAybylh3c/8gQjsUwGhPT6xReXMtlP0vE7H74FOA2CzDaN02m+wEe52wk1pFLNBRugmNMi8FxsZrpVE50MkPF12nH1W3UNkCPMSqVSORRZMEfBDWbh59sDolpOiMkmdvqcT6rtfGfntOKutoBt2F44Hx07g6H4qsc7sBQq61tQHaVw1L7z3nYq4L6wsfjGK5lKb0p2NxxmpWmYe6rdQX5QK+6bo1AVip0i8gDhjfNCTH7qiIRjRBigIBpZe5KnxfzBfxEjAyXEEvFR4IjchP2B2pHFDT6raM32+XMXFpaWiMBIom40QnAg2c1R/n1+ivJAh8yUEMuP54hu5uB9lpJ5IvOv/9/OxmKcuUdyFyxCCdshWkAzzwgBsEsI/WCTQ0ZKRKgP0RnVUOR4SZUDkqSZ47Q7Q/6MyOBSLAazFWSvGDKUjxNbhpfOHHfxwobH5klFUtQvnuwfUz1W1IfHFZBepUKueO/+I9qkXIxmtlJJ9sD3AVa77DW/I2AJrvgTR/d3P3rn+/SeLK9nqqCEj6EBKi75owE1VD5BGu/Z6T41O5CuYI0Vf6TvDpUGTQpBsP9gJKQJy1lRc3Y1yalQ/cRTDdlXroS9KyFvKJCMu6ytgT+YMXz6lWS8ZfHHIOz0siNqrim4ENLqY182SnGzOYrfE4ELUus12qMSUgPdSS6/P61plSolK2A+wfV4FD/bWYfehAbx3YbeA2XkSCcSucJJrlSf2ZHTrl6DKqHTzQwHwcVYol6rWca0R5urGZ6l4PdIpuA0y6bA26QuxqVCKGJQouekfRt1DdFoCPZVsFlE/PETJGI3hRkPdntNq9fVYJwHaAchRhRPiCzxkGnh2yNQYN4L+gDRw7dYQTT+RLFlMnHQngTdSb3anVaoRvaP9lla8FLDP7J2fQN1ASF3p2VQBUePTY80OQN/aMF0rZeLH/f0y5eu+PxBsTeexbLTMZU+AGowhrv28aM9hwcquyGIJK+nCEOXz+cibo9II2UrsAcbHpRCkubsLF+rQtqmHRfPspk0KfSTo+N7d77/2qufIRj4m7/+vx/tPT23uhqPzJ8+1dZahCkcZuIBSgrHtbbqmiYmzoju6npdxVZzCK2FbxRQxoAN1+NLF1W71+LRAi6fO1R9kCe+0mxQb4qdQtNm6dnSntjyg2HVaQkvhv3ZqeWhzNlCJgo7KeQFpMJ6fTcTUdW0pYVYixT3GDizIxiEbYtHZiMkHvBh29tpiR1KLIBKb3WgwhvQ7shHw0oQgxT39Qxrw+IGPlA5szSqo3DKfC4gxYCSwbYP/Jo2Yfj9uqOLew7OEAEugAJ7j7WBwsHEJBHC/wEUsFdJw3icXvY/888uFvFko1EtCgm6VynSQCiAaDRHmauZRdXmnaIX6WtO9IjIHkgjfBqRSMgkMhw18v3F4gBsb69Hs+Td3R2qHReyy3/hp39qbS3FYyucnlo9fjpma7QyZZMxg9yfmTFhLmcHhA7MLt7Xq5/97I1Xb3RG+iysPyv/owh/Mk5GUj/3Mz9Fb5eD/b1ypRaMZqiYDEdUfdqtdSaW2gS6KuLTGA46AUd9WGjkzvLlxdU10lo0EjVHaWNvW1p0IQtPads59YQStnCiBVo8EX354qVKvanrHSQwKUpUKpEogt/ISa4Ks6jV7rR1gTDpw161jn61dNHi+GfeAADMWqOBNT2/F6e1Vik0Wy4PjnDABa3OeiIrc2zBe4HVbgoXdZ0sEPTZ2jGwL28wsB7z0h3n4DRfNnRvOFnQarleNxpR2rVeOODc37ndDyjXXv+JJEz1xN9mB0YE4n1GBEaRPKyoJEuh127wKBvNDuVjwPsJM0u+dUaFC+cZeVS46emTQD6ArocEPp0Jx7UbF1+9+UUkE63t+DRPlQlAbZmj8FO0yOwwX7BifvBNeT37jCgV8wA2NvuKaJpnX3+uZuTN+Qm5evPEAJYM3H/8Y7Q44sjUcXB9YvciOyCIlVwz3gkImZFzFIhgDqP77f6wP5om4IFcgI8RsnGYuQVnhGUxIhngphlEBxpvfKXZcfH6VYWaKaf33q07maX03YNj59OT/+vf/M9ogKsTtifuBPDD5hkk425a804tR2cH29+otY5y7cOj00pes/RXEsmx3it2dOLCnxzmd1TdlV2iteR96ugCc0HjVpzMtxr2QXPRo7JcEajxZErVxwDqJ5ffeyGbSkSihWErtbhUtfdJPuH4j13d8xOfQU1gxJdSUy9klm7rQAmGmkHOnscxIzMjCQBCaXb0rW0MIKPep4F8JBYDdEWC3eOLEcgfDks4QlNdB6IF4LhRr9BBcgKjUX+QDvt++rUXdg6PD/eetrq0KPQKAnzSqx3tV4583ngL+kC/w0+djDkKcp/1Q4ULoAIdNANV2Z0+DOvwFcQTGeKioVAQKxwrkN2NBQlHiPjYmAzICwhfSMZiRDtg7XOKdplZI1g8E0M7e3Lnzve+bY4CLcwz5kl59JyCleAE1eBkT5Oc7u0c7p/mTvBXgr7Q4sISwov2FoCYdw63qwYuGj7syBOlozOTYIcn/qic69355PKFqz5fAOPaHGV9ed0fDDOThFfUePL2g0e9cR8I5mff+MxZqX50vCs55uHE7w0BM2PZoqFYq1JpT+sTq0VvFfshFzmCD979FoECvVm8cvlqtXQ6Hna9CmGoeZixVGx7nC33etBHoCLfcra7lyKh9l4TZ5yQ/mHeyLktrqhLZXZGvYArQkeA1kne0hydVo/wFwBKGKQa2ZmASKlRd3oKerdEa4NVT2LL40splj8ucjvxSIjYHXAIN2lMhWZTxu1HB7Q1oo4Y2m8q5yC6FCp+u508PByUiKBEOgtSHLqspkYFMoICbh0nYHEEHTEpD0aSoU37zYQfmFvAnDECZZArEY9UHV5YWdAYPEMR3ZgRAhpkI8Nqg/+CjUBgjwi9dHVGP7CxDWsf93BuoNCfR2gfvOQe2hY6yrQgwaAztTnKXM0sQX0Hf0ffmFKFLJpFpBtyuGNoLQgUy6V2o07PhEqxBCD47CxHzFxVQ1/76p++fnHj6ZNPIDoZ2AgNocEo3uzGsssIE8QHQUMkL5kKczDs3mZXW7+w9fO/+AssXvaKKY9w0MSXYPFJ4s9G/mBtbW1v/+DNb3+H9hSXtv5CJXfy+OGDwxy7qQQVPsljPCeAUDAEeX0KUBP+w66fT5xAP4msDFi+bLudp0/e+tY36432J0A3etPFlfU8fY0MHap5TCoJvsygDlQpSbez7mgKDTMODcgexDfVZZDr8LDhrpjA3iienTmKZDg80lI7Tl49ESSn0x+C0MZ5Sa14x5122WuzF2sIw9HO49xL1zIk/GhGdP1yPBSbHhxBe1NOpVJP93IbK5fcy0v1ekn1VALLr8HpGd+6AcmyOQqdWLEQCeUhtdH8HTK8ML7SQtTvCUZp3kjMGl+Q5BeAQqlo9ts8zXo/Su1cCNwTISgmBa9gunrz8vrGFhAlJAqRQ0JVBKZnfog5zp/8NFXFMyXxA+/PXpp/5aX5gf/3j/Gn55+Rb8yUkLyYfYXPs7OZXxFGwjEzQGAKKRFAQemBSAdeu9cF2d00rCw1vFEDmJw34A4lw9EM/GzteqmxVyDbTcADHB0+GXBV2OOITAkufnYAisTXIcb2+hdehd/47aPH3/r4IYtQc9vcgUDcTgN2a8VtvwsFIOXdTf0P3/xGh46BA5DzRC5gzrBWc+WEN3o+vUaSiGxcdm3pKz/354l2EpRwPVOZvqzfauiKOnF6bYE4fBQBO0WVPacyUDS3FE7CZWvpeGB0cYUxNPwYUQNvzzHD85xMa21vdwmuGZDydN60udhKJC0gxsSp6EPa+Kx2ullrIxDc5EBDAXsQujM6B9PHb6thOaEWB93MhkIeMBpCm+lk44Luag0GH9+9/drm+ujFje3Toj6A8S9lD7pi6YQ/afd7oxO3OtSpupwbf7JtSI/xG+0WEDlwi3UMinn0zmDlQhqpDYtgNBJ84erWycFxTiM/IiyxM0NiIvkAMsYOIsMpG/RghKKYIlkB03rx7MGH37/97nfN58KXoKiuE4ggPQxWQVyQMTeciEehQ4WC9eTkCHsZBsPzGxcB3JOkYYhYOKJ4Xzoq7OcqR5RMlCotP2zYPpguunafq1Sm7uz+1uYlwjfmKD5vkrgfUhEL6/KFzXA4sLuzh6fiV/spum4nQ6223kfz0KxrhI6G5byMT03MGfVDlmhjFWcGIrTAyZPtW7c+7jTKAcV288aVg/3908Ixho45Sgc52mot2tVSu7douGOTYL9kHFA9YfHphQGN5NVFL7KftgiWsWbt0R3T2yfyRPMJ3G8n2GKKfwn2EUecQKyiK+68o6OCdlFd9oB16VzcHAVFhCXhUQJgrLRujaRysVbYPajTxddHnSIcFtWa1uyotJv1UbQPLro7hDkdumWsLBq6kOCcTnRdIwMqWQy7DZzvWkR5IZvkCwqW8ewgTYLIbvZrI3efjIZEtsEogtsUngegjyIFCVnxWNEY8H9LWkeHBJK9golOaWWA/YswnFKKhUUOE/5gQH1gE/ClpH/m0nKuZrJW3NORz9f0eVW+DsiMoopmq0Eqr9Ns6rVa5fR05+kBBehQrrJQQMAjdeEzL+dLbscQ0B1Vf5UWRRpUCLS/un6BEmNC22gso9Mh7GneEsRboOy/9JUvpzMZcAmmyWz+icWJCGJ9stQI8PGnlZXln/+5nyaLCN/w4mJ2cXX1N3/73+Se7ILNILcrtJSDIcVEkUiQmWGL4I6bp8KGwKXrwfaHcZI7vnvrfYw8m93NTe+flgot8It04GZAvsJYqCt2GAgCcQGcEJOzU9jzuPHMnxsFD56KTzqnLlcTr67dMEeRFjm0VgT/M7L5fcA0nRSl7BxrDb28sXXe7Z+UT5pwRGXiIdVWPysVljPJUGhcrdVAk9PSIx6intW7tkhVE+ktINO1ly+caxq2eqMYyp55kxfn9yKJeYSJkAhQ8Wb1jGMLvswqdDQEnKbwLsJPyFWTKiUSZZKArF+gFICucAZ5GgIxmD+OviUeTRIJllwj2pWcDpMMsF5Wzv/ng0H5g4BV/n8d8sl/+2PmQ5x/jz+K4Jkds4+xvymWYGCMOSELAUpFiYSgGLDMoAPAQAZdAxwm7rZhcU+VQNjpDfjjGTqHjGsV1gee28wwkCJAkPlkAcAzPFczCTUEipZ7g1/nzsOHloZGVBEvHe56vLs+692l3qlUWsvep08PCjrVWfYEFqTLn1xfyl4+t0hpBjs+7IMshZgx3StpWYdzCj6UriNEuc1b4ZJg5HCS74FoPRwH+jG2t5wa9Hvc75C+6ZBKNlrFGj6y1dVvGLTIlHIQu6UDAaUuVlHL19GgXyZ3Px0iNLyuEMlPslPYOn/SP9egkisfcAep4vQMQ45pwjJw1MvNwaQFv3a72cVWAAqMwBYjRwIQmLZWLJ5v3nnYahQ+c3nzlYuvDybO5sh6DOOJfxpa8zf7beuQfAjZ2fnDJRmGIy9KhyJ1wuPCTgk9CgdsoPyF2bOrgeDNGy9s338EeV650WP38CAAQMfDSizsl1iiEw5TYOmzVIDMEXy7rQodftqaOWM8dwpK2UqQWgroA3JZwaKSPZYVxOWT6yXzTY43nc6ggWS1SztvojfO1ew6aNHjIq1oKuSrJjAOknJhv7pthVphuD3FhDJHYXHwhGYwakHILiwsJBPpfK68v3+k6R1PgF6oNIejSVOvgVMwbCNXMfnBx1Wq5bOT/Yd3CPu4KTWl4xFggVdffflnf/ankEg0vHj44GGtVn3304cMxG1BIRedRXkbhZpG+zMNgIOvRoXlKRkUm8dwQHFGOHFEc04qKy2qL7XusBaH3RK3Ru1idTguwyBNj1iS93onugB3jUWrGUrb/XT7yLyXSrUeiYAN8OBe1g2jVh4kUuHEUqTUafv9HjYdHkqZ667WY5FAIh7ALdRbTSF9wru2EcKFStvpNmBuGzB7+P+9AQ28whuLKSDcz/Ykn8ZZka1EDAt6NCY8TC9O4NVWoZgAOUT2FQSWWOODPvdCxJISHFChITqYuqgQIn8o8ADqFj1ssqlNG+jNgd4eG02tYUAsPzvmaiboGGj6WD8+ovKlb6crda1SpEiAwpBi8eSkdHraaTSL8BDrI7igWnTjgD9rOnrwYI9cD/yGy9kY5KCgUyBOJnxB8mD0cm/j/BZ55nKx8t67H5mDdXvdV3/kx67efAksNteN/8LxPD6DeOJXfiJDeUFaUFUJbkE7AaHIyBMILS5lHz551CNP06zbWJPG4PKV5VA4KJBYmvY+o88jXg/HraFrlOHcvvVutXAi8G1JsLocHi+lA9TrujGpxNMG+8R8Ei2gFZEHZcycgtkkRIOaQbKjaygnoF6XDAjqmuouikvNe4kGneRnr67FFiLupMuhBiOlaj7onfj9o3JhP7uw2LNXXcFJn05U7snhfimGILmCPZ6LxpdKY8edh08zi4PNczGbs5lZTLgnzqOTo5PiE1/w8pVXrkwH+vzx0O8WngjxLrF8xg62s5cJnm1NYQshRC4fFL9LwMdgrLk8ZCNxX4DITIQsIKeN5gmhHnaoRNNYnyw/YUHFEDBH+Xd+yp9mh5x79lD4l7cE32r+Qd5GCIiulhezv5qP79nf5/+Ki/rsO/zLZ9i0ok8kTI8lLo+ZuRW/W3wcAaKRwnUJ1QHNhqK9phaNpZPZNNSNTcha4HTsQdXGohV0Cqei0NqAsYiYxrNAE6cQg8Fugw4mFYteSKbKbhftBQF60N/OghnlV4/b9cPt5tjiyK5kvvSF11/cOJ9RoWkNU4NDkoc4hG7tUj9C1sgL6wNG4KBrHTrw8YkZmDfmxxV2RXw0gNQdwamPlaOPO5M28SvNn3EGQGAGvHR4hxOSdtGWftdPtDA/PdSL+lZchTPX6yoHhn37ED52vH2rDbceK4BMiA1uCdoQmKMorqDRGunjHj0bYkTo/MTlqx1NjyWXootPtbqGE9PW2DIOVjhJFTHViKFaLLjmd05LSwtR2hUFvKHFWDLSd7TowuWKlUvV3tRBdE/oC2YHLVjQUehgciSIC/YdP7lXWT8wAMBEB8bAG1g/f/mVG5cgwx7t5klGIRZjAXc26vXZLY1KA/4RrxqbAYt4zrIuSB7ZpNvV3GqmkJKwKBWs/X6LcjoWDysLJ4nCWOI9PrcaCyTAgi4uLmIWDMYkUFlYEqRhiRDBjakx4GdBJZArn9WIawOBQILQpsEzPalSvPIs/IsjPEPdEtugdwL+Hdm3jQ01Hk+AhK4264VCEQVjqH0I0vu9hpAPANUFIj8ZRyNhD/tdQNseXGe3Z33j3Apppmg0nl1IkoFGqPz3f+efMWdMEenPdmlSn/amEcohkLVU6Ax1ez9xPkBLq9KoMy73IBl19EiT9K17+URr0Bnq+/l2F+0p4SZnezpJLsei51wnn+bAWLHyudFueQx5nflc4LsmxtSrFlBVSK9+o7l8gYLpwNM9ojlTqFFpy5laTFinrk5LOzkuhgMeSDkh/Zv1NpLqNPB76AmpelQ8Rr0Vps2S2/UofwaXxpKSNUeR5D9PC94tpotmZMMxfMRMe0N6sXvgFIOgNkQPnPGkCV1Sp4YyEeyGMfDaPN1pH4ILQj6Im6ZuWPoNh8XZardQDVhSFGDQxmU+ivkPzM7eKXPehh/AH09Zm9XR2Unx4aPK0REFuRdTUffmxvuPjh69d6fJRLECycmS4GdJTywU2BdrJYQ12h0oMMbmd7/znRs3b0LQtn9y8tGHH3/9t3/fHGXrwuWv/sRPEAMAz8pkIxCwcRA9SBlEBtKNFxy8I4ubRUbWBMwmRpooXRt4XArcP7n/oFisJkLxlcWlL/zoF1TVRxqRIkTOZ46CVUhFW6NWLVaK1WquZzRYB4KkJMnU1cEx4VaPpSgeOCPDArxzKgHAWSpGEiVq0IM6KPKmdgwijR4kUXCvF9l1JDsoaMDYNEchZJ12DhYDFFA57+Xzay7PSSFXbeG22invwiOHVawzwJMj/tCtVQfxlF48cy2dX6Q/DKvMNiIbaQuqCdB9IJOufP6Nx7fuvrA48Xit5ZOTyfGROQq3jdQUaAJWimRnZfNDVCeoVhgKAG4BspJSR3TrgOg+yWOeMOoAecP3AGlTPA8j8NHhI2l3pvj8UPO4wLnbIGvgg+YofEG+YyqMH3zNn599xvwkD8n8mClLzDf/nZ+c4Pk7fOz5ITkhUUySPSakjwKEpQU1D9yH+A/4VxQPbyquKLS50J0EgvS89idjsZ4GV9spjSm7TVxR6EEFboo1TlQW9hK8eAV/6BkNKG1bZhpwnAhHEq+88urLr7Y1bfvJdq1aY2lBVYvevXP7DjHbc5ubV69eoQ2JOIriLw4teMgIP7CkosgRUhJdZG0Rz4eNmYvHoDNvJ2MNkNezwVA8Bl3OKh25nd5xbAjgBxU+dE2rFgtBNmd/4NfGwY2YcwLfNKGeDjYHvrjTY297xASg8SmwVHx+egRyOgewMZtd1OHsmABYVOKkbKBpd0LU6adRt5sIqscdXXghXdgjlN0Wt5BHTYSB6KrLyyUPUdRj2hospuPZ0YC9mUcJXIymNpOL1jNto+YcOlqG+4Nu6Lw5CgFwPF5OCqSFkCzGKh4N3D9uf/Qivc9iCDKCW75IemPj4tWT43ynqVchTCSi5fcQiNnbyx9XJ5P4RX8wSc0My2OmH6whOtSms/5QyBxF4ioSKOWvUu7HS7xZog7Q9okysDvXV9awFOFtxO3BeDUtKHGFTclCPtnuWUotUUbtzDtYDySQJ3itGC42W6GUN0dh9/Gf+HSSwUYAYk2i0Sbgx+ikuzjNrq8tV6pk4OmT1ISGlgshAONy2hYW0ixCLEni8ATHWBXArKlLmwU8SH4xiNWvesxRvPT6I9EIh6nD7jvvdV4LDc6qzQ9boOyNgNPIj1nTqWRAO67Zxz1lKRoaW4pnxf1mr0l5bVYVkoXO0FKx5U+7FrdBYgGzMh71j4NO+vRZmvOAOdhd7gJWy3K9OZ5A0+tu6dPb94/qQNmscF12KSBhevHsa0Wonq1YWgPDIFyGjGK9ugfOvqXLLFOLbRv2V9Ph8/FIb9p/XCgo8FO6w+a9gIQY4jWSGHDaFCK/wGbHo0avjrFiH9rJnQFAw0JFDlAJOFUouyGKQwDPoSELJxPJPjgdeDMG6R+STl3sFSFPp1Ed7OgqcdTZMfdmfu93/vhn/8yPQDStn+zb6pWQz2tXbZ61ZCvkAxbtDUU/eLDz9vsfVpsd4g+sDp4deEuxNcTowFUlDIJ9I/YqK353L/d3/94/uXbjEyg/v/nH38ifHpuDffnP/HQ8nIWHB2NWVuPsQN7z7/OfMyknPyRJz0gSbRZvnCdNq+Mf/fJXrr/0MoHUUDBERIigATsfwYFUEP02O5CxnBGEIt1nXexdjF8EGKPIGVEvThQNjKOUDmNwSQcliHtdLmvAj6+IbcX643qw6Gj2jExnTpls4CDwPiFjgXSbo4QUi97QbS7a7kWTLmzWGvWxYl0Sr+35+/2axQ6FMz3aHfmzztJSSvVaj3aPr764RbvPbmv05R974/6TB6mE49NP8qViYzlbfvWLn2+UD52uqh3cOm0FZ4fED5lwshhsUhBAVFaSK4ehUOKmE2oCmSfmnNATH0EHYXRAyYUlZ5ApxTabAZF5Kp0OUKWms0c5K7FUxa2EqYezT0PmKKZikDn/dzL/5h/kqc71xfMX5hf/fX4+O4coLJYL7eOwdPEF8EaIBYMUckBD5vZQRUaKBZBMMrZCGGGol/VmNRiMNcsnR6dHyHnVF+ZhBUIRII16p8WZODMxT8KadkoJnz19YrQEPRBSku8jwuYEhOF/7dVXcewQHyxmYq2f/9zneM1FoMJnyA+xdcxDzJrnBzMqqoXOGFJRwCzwu3nLukOXiiYnFIhwJbPT8IdR3s6+h7Ac6p4fI+i23X6fEvfbxoBWDPQJlXRsPxQkhisIIwsoeNgHFCouPQamMAIYrQUgAka32QGEkRiQwwY+SEW5Cj8xlTbd5qTeXL28nH9Ybb+7LUkGNoicky3CIiG/ZbmyvvLnXv9MVLXnCDDA49sz9ifjw3qJTrLYGuGAQ/XVAvoTcxTQXuNpnyYDNhusItyrAXMMiayX3/ji1Rdvwug1C4Sx1XxTZwgAAFe5ECdOo9Cf5KzeadHh0ak7Utvnr94IR2WpcBB/A+y5uLqeWVq2WG4xkHhITKwVRlFVXG4RbMw/mHzZkvyFdgmYkkSxyapK1AuFxGfMeZDlx//Z2dYIPe4WN1W3un94UNVqfJ/t/uzhC18vz0h2OnlXMYJlRaPVzJQgtTP4T7FoCFsHGVLY2jq3sVYulSS5JeAtl0r4m9YL4TAVulQkOIDjwdQ8o50lvy0GyOzIXDmPmTNMWcmcTA1KmKivGZS0TjAR758M1C4O1SQJltPjOz3SC7VawKfke72Ge5RIgvwiRDlqK73IOf9I7xtNK5zrFPTR2jEYsPmt49rTeZixXjpp0eGHS586axpcYcNphQxXD7PMaNYoaA5Q/DruOX2O+GJYbwDNpI/bFMIaxUtVxgi5RfgPY3Lc5e3Bha2FoNt1WCYnHcC+O31WBDrre0mLDGlswWxBlAPtm7D9OF1S1BnwMHsw27DYyYzAvQHEYIhH4bA3Om0UP7wA1KeyCO2oZ1xJOH5R8YSpIb4GmEMKZnbM1UyF0mM1Qm8J6wgCpgYRIxedfPzZWJK14cjXu3/8zicl0TFMNQtADGzsaK6M9YI9QjiJqBSChIOUJuGr9z64de/ho0gsXKX9s0ftdFoMt3HuPPvK1DH8ago1FgQvZl9ENEhihjfE3uFUkpVgScjaZSOz8MgukKPjY2Jmy1PHQuYWpKvNszUp52XjtbsdNAilljQAscH4QeyNdgi4AUoQrUS8aNY/HONFcYf8FC4n4mmWO6ZoMJxkgSNWSPeDLRH2A4GKYx9ILp2tPps3SyiSJu0StNCqMkhclMrBlWS82iz2PdOF8DCZ0GvtyeqCmj9rs9tRYRBu02Qafh2K2A+OcpAmfO7l8/DcneZyo+oof+tR4PPRXrcVSaxZbK5O8Zk9Cz6dVL6Y77KDiITiKaNH+IlMwSPAFRSKWjpLSrUigT5xtpiemfdmwbaWSBRxM4JvdIsbGVMN783d7VUF0mz3mffCTxENszkVITE75Ffen73JXP/Jm6azwjuzr/HDPMzPPH/NC3k+P+DZ2IhG+KIuel6NLXBaQHvMraEt7L5QNBKHkqdSOGNdUgQkzN2kKMaW8tku/BVOf9zvi1NhPqYqkUJaqXMmwoknYWD4TaZ91TmhyZE59PbjXUxXgDRoF3C5z9cVwkL0HCAZo4crg9bh4Cuybmb3PltU8gFemGvrB++IN/k828kcpT5pkwCCZIkMBp2gfPTKxBuivQgYVdmD0rK2N9JmJWRC5QU4R+oTWdfQpI6stDxlRbGayVK0jSbuqLSPYXVwF9hVU2U+SrO2HFt1dkcYSuSxNQPKAErigc5bvKrjypfXyaBUjiv0cocFhvIZBGxAUc8vbt7YXAn7bHuHO8fVUyIPyI8nYCKxPqxW1a1EAuF0MuOr5MxROlikiLPRFNQf+7utU5QyBERy+dpNUjLEY83ZwHnzpxaHvuBQDayc23zp2qW3vvXtxdVQGhaWp8f0CxeFNztmp2UzeUKxVCSRNkfBd8MwAoDGr4IKlBQodjPPAKOTd1jiLBgMJVlxyBY0DXmC2cKUpSdCQOQAbKE4hspSYjHgVndODk4Lp4TIxSA1D/QscoPPiVrCf0aByQNlE8xUlh0tJq9tFjqVLi9lo+EwC4Mni2ai8hRNQ8SMM3ESse0Im8PnSkBDmMUpz5k//b677w1Yh87mmIrh/LCpDSjiDnrxI/q99nTgxr5wHD4sEjIaYRrZrLXBxLPiStm9RHHGHocnRCQCegUl6iGGaeT36uPBtAGEzzJQM85pEIEmtqzXqU080AxB3B6CS2g5Gw7jcXaalK3iXELJRrtfSjIko6z6RyqNTCEkHZ00NGpyp3SaRS7QxaA3oZHIpbXF5VgYeoJwNB5VwGp13L65KcP9EsJBU+IG48+hdQR6jhWIASf+psBwhxhKJL1EdZG78uH9cB+gy8n2SyNumpBB3BEMIYWaBo8ULYbPQXcLiVXMn8sP//nhDPxwBn44Az+cgR/OwA9n4Icz8MMZ+OEM/HAGfjgD/385AxL54Pir/8kvUFl+eLhPOMIxcUUhR7NZqw2ic21CDV5aAE6cyWi4A1UrPDyTceb6xrU3bnz7X3zdpsNsAYjb5gC6MsMwEQUB9Ix3mwgES2f5IaXM8eh//p/83xjl//yrf56INpg2jdbikSj1R37H8OzkbGe/FAmreJPE/bpGv1QDsuxOxO0qbOETa7013j+CQpU+VBbaF/r9tIdIrlyELnkjTAYM/Aft1fUuUalf+av/LaP8d3/vPYlNSJph5mxLgJbGNwAk5CBGxzXg/bkcVFsTw+WDZNcI6EgmWuA6Uogk4WiJzHNI6IeQsbDUSBhtMvny5yQO8KU/9dPC84Wj2KdK1tqmsyf5zDExR1raOXT6l1GlL7kIzuyBGJXsLRgnn9/HPRKZIUIdI9YGNMwKGJeAAVfGSMJvysk5/sE/+11+/tr/+v8AaNfpGtFIVCJj4KiAw01GkkRS3HpHYEawaXFPRMq4aJh/CC24QVoTCTBIBRvCXAwVPgRUwBClBSrVm4AFCAtIW7y/9V/8z7xDiICfHGYciRe8w2t+cqkyQRSRkQYB5y8AIUgTyC/A+Mkp5TBDSYAgJbox+ytf4anwPohzqhCYds759D/7VZKf3DxXy00xJCFRKmNCN19yr1yqnunHQDi7o74jMPClHeE0BWiEOSmfZZ7zx4+ajYI/CAGQjeZ9UNZHI4FIyAvbBRRJ9NyDg3phIcQoX/m5v9yoa8KaPmxT2Eu9aqFCF1BY0O1+v4REiDJIG+iuvraUXIzTg2J4VGy2IKaC6FSukxz8jLgJUiZiN2NrrU3BojAOUGoGfvjx+3/MKFe/9n+ROCPhHpKRRGcIETmlsxMsHQRj+Qtzxn+ckHJtQAnk0nhrFoohiANCUJCPwqMwawTG2uRrpJ5ZtoR0yPD91//Rlxnl+mfjsANWTjWXrAr4iwLJVCwHrqXVIY7vU/wU4Y/pRDy2dnUwkiQieTpj2qYRLSf2SLRMOkt56YBMt83puGuD14MF/8LmBqy024/zu0/KjPJ3/+7fY1GAN1MUH6Eh4MzQMPNsuXipogDk6YLwSkDwnJ3qox/b/NKTJ9vA5NfrKm12j62VFOimsLMU7Hx09uHTs8dXV19+belHIbFnQK7y53/5pxjlyz96fWK3lii/s0zo65MKhQH4ezxOfdDt6RqhedJ1YSUwS5lKoSqFEcQuWWbgpiCDAQcHkRVNFTyuALkTei1ykO7iugSMa3T++n/+3zHKtf9mlstg9/IgmWT+kVez/3ghkd55HF5+Izpn/iofenbM1iWfNH8XQWD+wkenltv/qeTnf+tjAnMQlpIKgpKI2D5bWJrSPzuFbB9OwFdlZIZ5Nv7zDzAyuWLzbQKVs2/ORgTmOLX+9A15I5GNEtGfYehpZ8S2HdJisVajagRcIklmOHsUQpG9vhaN+6KhqFFu/LnP3vzrv/yz7BHZ4eBiQHHCAemc3r1f+eijhyn38JWlSDLkbY7Ghan7839NpOVX/tLvyrSQAJLLNG+Vl/Pb5wXLFiFIuJPAJctDrlluTmjKHJaTiQ0xDwZWQvHRsDWZCOrNxnv3xhRbkJ9kh3z7t36e085jZzyonkGVUlD4whV6ho/8il9RRj4XQXBpjMrOoRMrRZ+kt5zGJKI4m41jvlDJF9EZsZQ/4gvT2KI2akLPDbHWcGo4BfEAgMEO/xwjcYRiQaAm4Gc63dbAolMX1bGMj48bnJy4KLNNIXO7MwbJRxEIVV9eSnXpsEEUVu2f5BsbG0vCzdM0nJ5WvVhxnNsEDkLQG6JcGBU7IOpmh+gGsn/z5WROGe+YDx6BwMrhKQJ2IqA72/zwHRBFFNgkyxuJJaBb+ThILeKRDECiGJA7qACYVJ8lgeFzg9ISumDSOT0SuB1d9ROddUkKtSsfEtnhmSWNHE5kGVA/RaFgCmyq5JN5bOjjGPASOlPNIsUQb1CryLWZh3kvvRF9itpCqSLJanDdQ7YowFMA7hDHU5jc7ejsfo9fBcUMfpFLogCNjo25cnshqjpmNSgsaeBJ3B1TQo0umILZkhGwhjkKP807Nofm1tEx6A/JkCGBRLfOY998wPwwt8CB7uHD/OTgM2gjfiVMz+snT56sr68jEZ4PQW0+k46iY1ZZgmh1Lsg+tsH2B3ff0gXIjeOdRq9Y1XLNUjWXM3js4QWfmgCgAbOixbNMF1mfMklANknltyq0+JCrQi9vhxoJjnfzsNlhpsIuctKhR+tkM5lQIPRw54gGgkgvSc7LpkHX2Cod+NLbK+n4pYD/ydMjEPJOO2ykYneI+EdMgGefkGKwDcZtt8uWjEWgFZwPQupQPkEpm0BLCEHTOMWj2KQvEbF8PsQf+c9CWmWE7nKD1WIjEuKXUmJA22RqwfBQ08BKBwoIoRQqmKFF0bAo56OAOgNXLRq9R30YxItQDBojA0YkrAjHpAuBvBQckVKE8gt7AHAQD84yhA+k3yOZZJCbIr+Psrb0HKMOJVNkWHrlSjkTiHJf5igkIbCTEB+yKmbiBBuRVzJRcAzAfmFFP9Hkc+iz+119W/vgrN/OWf3KyBno2+A3gfmg3xiOSg4D/tz90vHR2dklpZTJrIKPrs6SsgwkFbkWcDZe6khZykigoKh9KRuw0KsNiBScFiSpiPpbpxhqPECdZlzoOqG8FLOGk2CL9QakM2vUJFWqp3S7UCkfDYbJDZj3IoYUYn/2i6xU85jdHC95Is8PeXwiMmc/ED28Mt8S7cAhknT+19mv8tr8C/9iGCIe9ILbOqQ5xdjip+ELCeH5N+RMcgb5R3YU487eMM8wey1v8mdzmc203XxwgVbNhpUTjH2gvSl4IQsO3N9NVo/8ncHjkLNO7a1Whz8FQgotruhfMjX67CgmCvMA8YZNgOUiTN4um08dRNJLfb2UbwNso5zOoQjgWQ7Wr/xDGmw+B6Lx5dpYCnJNYmtL5ls6i4t5xP9YFZh1HptmlD5S4y/3Bxmfy/Ln/tRVrZf/3neL8bhjIeumE0pvwCOb38szNdOD+A8ag4bXCj7J0q+P/HE6e4Fft/gDQQqCfQFy6T1mUnX7u15Hq2g8fbQ90m08ZL1FXfak7xuFY/Fxk/ZF5Aj9WJFgIkF5dZot0r5yJ+jnTAZK2gHdnEaVfocJctar3Up9EEt5ydLzxUZTr+tjtLXgtW3izaBmsJJpzFOs6cUaWakA8O3BpOEJeLgDBCv5VYBoE4r7nnUcYQ8z1yayQBbGDERpykFmiBUryAAQaPzH9iL5B55/5ECm8lHZ6My7iE52H3l/SXYJ+mckrzmTZCVnB5oHTcJfcHFmFEku8rGscZimaGINdAq0AtYW8CJdEJOYuio2CORCfFtVA8gXrYNg6KkBisut1Xpt3NWRBiLheIzPBI2f+nAop2jMCSMvIATgu/YpkApwJmHKhp0B9ByZXXEoEHc4CZBgNIXR9yRXDrrtqouEJ5aWgAikqJiDhTseYxYiTrFMzXsxf5q6hDOZv7KSmUbeZOp4Rxb2890y+xVpzCTzeT7An+iYxDuIOb7FAfAUexNvhi+aJ6zS/wP2/emIKm3K6QVCQk00OvfOU9S3ayHpA/8WTiZT8cvDXr1eO6voJ4XbjbzDnV4KezEZvT0bJDIMgkFMUS2SiowywBBgwwalcOYo9WZLJBeS3aVg0GH/wtRMNwHqJO3QfzmdeHgQ1kGNgutJnW610YiFAxc2lwvldh3WNKG7E7QF3gbamQ0HM5djOvB7PJuri+iEd/9Qxgl4hQoXU2H+H8PRsgUVI6YFrIZWOKZ4QXcgjI5iqQi75kIm5bK5aZjOQ6wcHOydFjYuvRhLpttagyaaoXBUZJ1sbRPNL6Ow7JujFlh7ctwaRWcDCtcoSoC1kBoHK0BtVQnQ0Az3GEdatJpINCkpEs9p1LuymcisBPbz8ERhCI2gMSezzi1QQERN3/OVzITi3/PoKIZDgAmoUeSjGFe8ix+LwMIcpUfUmiuzqGYAwuT0M+zSR+1PAE1GfBmDcpOevXj09Nh+suq/uOpeDnMzejvs83ijMbkTbHIoXHCfEYAYSEgHG7gYleABO4XkNeM4vT7uQna0bQR7EPYQDCvIcyu+WrfLAmNfk6AWDjzuzz5qtirTtjVfmCoubzgQN0eZyUy+M5fz8ibrbyY15Z7MD4lMkFcy1+YfSXXzpux7JlA+BfwAfQ+HNWqLzSM1a5xVdIAcsOqgvVu5+xHLkbp8o+u7If0jZ7tkfmo+NDsP/8q18FXzkKHN17wl/5tdlJyaQ6Zdtr/5AR4WZcHgRwghsCWJu4hMw6BgI3MhPHTMYS45GgoSU8Hc9NngTpLFg+nCIkE/MRsghHiM7Y4Ba7jFEzxq5XDa0zaPczQXZBgxs+nhV2xJNrsgLyhVYbSZ1BrCg8X+KhaaQAXhi5vY4FjTrNIcyelRF7JLiwdnNDayvXA1cVa0PE3rbr/nfNh2dNrMl/1Arcz7nqsZxAL9IMKhFFQkSAqX6pugqfUh3XIpk8cu6nUpWQGoRBGZfao4KFilvzXIR4vToGKQZgacPZLyDrtOYBPIglpJJ6LVr7WgjtafEbRcvHRDa+vV/LssG4/fja8DkS1QCgAtTAdFC3jmVOVQXMfl0XiXVntgd7D2WFtIhnJVo8ywP3HDOKbpwCEQAgBZhaqPbr/PwSamoEQ+yhpCTMxiGtwt98XvPAWmlTUEAgTq6VI5B6p5JhADDCr2uEwNlj6gI2Yd9KY8Nc4xe6Yzm2w2c/A4UUlNeW25TM0QoEliMmqzVsXy8tGJ1yP6D+gOih8xB8s1WHNT/2Hx4f6PuuIMQIgDiTsQahpcUj5AAbY4T1LojmUkB7GgSDCgt1vEvKSmUmYGRqSuz+KeGKCr+/g23Fm33ZS43GQM8REdZO39QbNa6CX9C7EQ3Nq5fA1FEI2p4zHxPWoDsBZkTzzv085rtjELlKGZJV5wF2B/ZTZmtU3mZJofYw5ngkkWvenQ8A63xmfQLnwrGAzySdQMSu35F3kHGlT2b6/dDk2noKop8wLQDBZlVK057nV6B0dAyiwLEXsw5g6nM8ur2XP9pac7e58+bm8/rU28LnVR9cb9nrhjampHNqdI5v4EswpA93zbEDQBTsh1SyARFjja1nY6VKdwtQo1lsD5Bx2wwaxiOkbGggFMw1a3v5xOUW5dfHJCDBOPXcJmfMHhLB0fnjx9nE4nFdVROT3AS+BGOIKYEbOJwPXgBSsGk8LjocMvliIhDtD0lVz1rNOuIkBbzS4NCaxxf4s3T4hM71RKBXiEY2FvOuxu5k/T2ZUIFpWber6W3cPmnB9ASK02iMRAtUGuIw46gVuYBwJBfwfiasQz8sCYIr7FVWUCBJXrSC8mzgpFn2/0o19cGzu7h8UugL5QhjpJhKm9VHHDv9HWqdRh5cgxW2zmZuGBommwoIQ1igdMCA0SwSnvIWin7rE+WN9c+ej0nbc+eddJZMLV8/o9naFS9U0+G1mKHBhnPueKkw49wV6hlrQn6F017M5HwVpCOhLgEuIK6gDYIIL9k1AsipFIIoHvUAC/xEeZFJIUtxE7j+1BZIKbMlcXz4TCHpQiChhvm0BlT+p8aLNUMu8F+B+HiHBTcs8UhvA3EiIGNSUxhPlfRP6JVjFFvUh2vshPniUniXrYINNW36rYJ17nlF4g+gBxPFcANCEBWKzXj7yOw0A7pDg2afBE4Humop59Rs7I//nO7J/ZaObvszd5e3aJ8q95TXxxdunyITlQFGzHmbKXK8Ve5J8QxT7CfAxgeAyxI5HqsM/dGzQCwMEpXRFlTrQTKlKibFA/oxylCx4xfFSEwxeoNwt5zcBKJZRrjsJT5rpxhZE6lKJtZH2Nmubx08OGVn0VvXlG00DLpHGy80mvG3ntjVc6gyQB2f44SKjW4YpS20Z77kTUHQ7DgLNWOKuWdGc+h8AZc7bpM6rZuZqhqtUZi8BRIi2EYMyekQ1Q02Dr0XVljMti0CIKgJ9hdSdVVgaaJexXHB26q7uhslFjXrTuSO+BOsehHUFAqWk4vJIvoGmD0TZv6fyFl0Cpf3/6nmGM6SNGn+Zyoy5sKOhoCENQADb6gGFOU8DFzdsE/SxYRVIcSF6LzmxBJaKoFCf3R65mq10r5eD8oUcPS0NsrtmBrWRKTDHFWNo/+Nwl1IhFix0wpGj/0YM7e08fXzi/5bC8FN26CDE4T0Ug9Cw18HgWmGgJ8aBzxP5i2UtahL/NjtWVJbwiskIQc2Cn4aqyE0DK6lp7Y32F1d/WOjiCElgSkSfNeqTX0HRSKJxB7EOdBZwr1Ic1ai28R7DIRCXgLGShMBZy3BzFaJRHdPCkLAQusoF4S8INBbG3QuOBCSkGQpm0z2EO9WGbkDom+EIm4tWNCAJqOgD8/eDR9q2PP43GKAV4kdEJ3zOf9K/GbgbIao7C3ufiec1PXnNgP1LvjcphXMSnqkJWLWkt88Jm7oqDv/IVXvMn5oxvsYNZALzDa6bCfOf5hndl1ox2p2/X8v1egQYq476127fo7cWxvtgj+GPvaINp85Qsg52C8NVNNRtVjdZFR3/kGzUneq7zMF9nFlYd7otTJQbyFcMbrnzcSeaCvl7mvVDSSaMDrkaeoJvCTbFKqVBw4GL28JR1IpjYyEyydeCaAppGgYQi9APFksDRlRptHiUaxuGhPLdweuB3WjeX0jjBvQ79uwvmKC4Fr8q0L3GqxJYRl4DCAXQbz2gIbNqmGzbKnfV6rlerpNKRdsPfaMDmEAmnL8La5rLrlsHZyS5+UmIlkSB389H739a72tVXvozMMkfRqkS+WJIkSBjNQeMZ+G0QSkKmw7ZwWHFxKIiGooo1gLmFf57JRrm0xSX/YjhCq2Dg8nE/DpotuxRcXo4U88bobq1Pxd1kWK+1zFHGNmQTy5p4GmJuBK0mbVcpmwhFXFCzqND9jGz6ab9J2CAR7Ebc3nH2tS/8xGmLAoeDqMUHLdcgMH4yOqUF2I+9+DXbo2EMfLUnHuq6td0Kt2eOAlgYz5tEJoLTp3opYSbrg+fEopUSDYoku91gMMIqhOeK6GI8FIHEpYWKhaZ0ltsDKYv14xpKCpDVKkFs6oxGU0p4KOo0R6G+QfQSd4Jwl3JLvEw8KNqzSLBiFiqQD5pOz0ytyHaeSw75xpQQKXrFg31HuQoc4dQ2Q0Am9Tf8eS5KqNvqN2s9hJx3GhvD4X/m9qq0cpzpOCJLmC6z6o6ZIyNVH5wXlLWMy76WEBoqjfPBKsQp8UWZdwlegfRHufDp2RFU/UgcXCgykcJ5MDtDOBigqPHc6vJoqD168DgSSZGxK1doBUNfdtnFGCWwwNB7RVom0Mx81g0dSSuc24qrHwjTFDyhDOP+Z2qG6SX4bLMGlcrA6Kcd3/rk/t7A4ms2y7Tfslulu5XR6UfDpMQjNIBs906aLRrmxejgMBzHiddggJQaI1wCgN2E9OtH7VZTb2u0R3C5nEHzXuZqBhJWr98F+zAGv4Ry+gaZBFoTeiGNsox7Vhv7kCIYnFh92PXZ3YTpKE51BGl96lLGg8ZZA+Fy0q4maO0ZCkNZkAhFAZyrQncx7re75mBhf4qQMaKGTgnLa8EWrk23G/C6MfYTcX/PO+wHRlN6HpLdmU4JOsQTIeH8sozU4NTdaMGAK1y8Di8tfKkgo+NQKk5NKt1LqFpgEcw9AB4a0826kO3P7gRhjmKRJSIWLgeUPrtP7+1s386f7eP9rSy+5nVPAj4+RuR3VCX+0ul56Evu9JMUYBMQPQFbjyDlXtga5r0cHhxk0ykIR/l7u92WTEW/T3QmHoshYbkzVhvj0ik2Xyh2wcRbadXXYGeQR+JKUKJ+f4iKfJjuaEiIHYSaxabDhJE1KFpNDmiICdtD+s2VQySDREdboawa3b43KMWKbCUBX9gdNEvnFiimovbh6ZMTtHY2FYFo9+nT47qmL6xm/KEAOTZmhlQIkSZylx2k/OxAH8hKJ/1mGLdu3SqXy9wNr+PxOKqFv5LGTyaTMESRa+GmTGXDV9AuHPyKKjJ/xYnhK6goTixC4VlUnV9ffeUzcCkjZ6hfhZmRJFtX105vfz/bHdKx6tBiaTpcYRIZAy1AY9WRPspFaP3qmXSorovBX2Afpyf9nbOHx31j6dpn7RZyA1ITTwVkD9exZ96KJRGN0s213m7j4xK2JO5lwQyzUSjQB4VBBAEBTesJPLfppN0tdb2xTCQVR6vggGYjvgY88SJuiEpKg1sIp1C+B7s7S0tZysJTycR3vvcOI3nDMaaLG+fgxfODRSjsGDb4O1m62cyC0amWivuPisXHZ9/9bja7cfXa5wLBcEvf6nWKzWqpXK4FAq4DergentH2+NoLL7GgxMedHbmndTG9xIzlKtiaVPiLR0JPEYfH1m91yfE73dNg2E1skERSll42UTe6d30xqAi7RG8pm97KRg+OjMcHx9g7udMmNx6OqqWKRMTNUZKrvla1DQk9yw0IycUbYQj/uy3rxo3E6a32ZNvggUL0c0CH1muvTF6MXPF8NtN+4dd/87c7u41GS+tZmjRzOrKeTZzjy5V4zBE77wjGghGLPnTWW6NnLOC4KRBRk4ViBUy9ODTYWXiMWNVCSwdShOZcoA9ag7HH5WUv6aMOHiWkHIRCavU24hfCRE8PD06eHKECLD4cZmk3I1HEuRybCeuZEkEZ2yb0IHQSv5DENTdBOEgO+fNsh2HLIf9lM8obIv9JpLmtsJPZhOkE81KaJsMvhbqA4PC5/LfU60XrsIuZ6Hap1MaMrXlHZI1ib6xA0sTIHBjdOaUIINEjPED8BfhhR+RZMaCF3Q43nuL6GpKhE41l3d4wwkXW3XNVBouEX5EYGKEqVhpxG24DyxHZP+yrvs1MXLUP26nEaiyaKJZiH9x/0hx2MPIw1mu1+mJwgbznzKiGNo9GO164AcCZeCMxrV0t1DsqAIHZEfH2q+WPlTGcON//YBvBT6s/FJKCdx6ORmj5jYFMR/kXb6wPbZndEy3oMcKuZqly6kuoS4uLipvuUzQddhyf0ClMYRaLlSaFmvYp9JoGwA1zlPnjEepvDE15ShTNecKKgtwLu1UqzQRlokxDNlfAH7CEY44u2b6eguwTomBPBwOlj+9GjIsN1cYBgbBJI5htwMKkji16d0Cqfz4KD9tHbRLZQ0IgftdxUWcJsDFhRXbZcI4camDscds6A/xkayLl8QVwbqZs+cxKtKWhM5tE5amrEucC2xlaXwSc2yMdFQUyNlczs3UjeQVMS5gPeKRe2lSY1BN2S+5s93vvfPf4+JjgNXYGlxKEUID2zE4LTaWw8ijOHhkadN249bRgoNKbZYN9KmxPcArOTHjm7vT0pFzMr9OaOhyWZ9+Gs52gvB0cFCPDU4HKxF0lhNpFsRiGlHYOKZ/CP2Ct0CDY2es2irlxMpFSnArxDIlaE3KfpUbYDObj8foDyHHRmtOp4vFJNI31jr7FXsMrcytg09zuAca3PxxkIxkwPlS0B4/zj+5Dr1JMB0O3n57gRS+vrzr4OuTsnTY0VTTSAg9FaNQcBSlpvkA93L59G6JA1AYXQygM7QKTNHGwk5OTjz/+GH1z7tw5KLRhbeEWuE58GrlswjVuN79yqdw+P7lHolV7e3sbGxvmyRNBH2klnEvYGFHZ0otqYtkBlvXxe55gKLy63Lf6q40aIA8DdW6dJhXYmFxaq8pVd9v9UqOSoTeL3tluPoxfvOF1qDZIs1jILh80qa5nnGbYEjDJsyPxTVS3M2yjNbM+o4n0DGyIshgksyxaqfp0hxei8cX1zWAcJr8A1fgbSwt1qI+b7SJNcSf0OQ54g9Fu8ezs9ITYIaSa3N/8uUh5s0ybSICZcJAZRFBIFSAiBG+RB8ruCfgyiXhkPZZf2X78HQPayfLDZpnwrM+lZJzuULn2/bsP3lW8n164ePPlN37c7aEdkZOaW3MUmotyfgwAOomAjZxAYkJQ3cnDxyJSJgOdeY8lqBynq+woHFJWlj0KQWYxIaB+Y9NRQGo5PGo93uufFIxqrZVIBrLLgZOz9mTiioSj1WKOgVbPhaEEqJ/BNRKHxTWQhFcpuHcfehuXRxs17lYPrMO3jh4fVWvb7bqSCb1w/Xp7Mto9ODw4yickhkNZog1b4EDfn/g9W5Gr39can3FdXfLE8eaJiJj3QqqMgD8c6NA2wZ9NXSZM0tjmXqevpDe7BlMru4z0M9KeyBiGA5FGeCaJomBlgWzoGIN6owU/DOKSfCqbDfXGPBLiw/c2RwHoIibcLCDFJLKLpIM1dZozbhskbjo0CXqnFJrnGzaC9jMFLpltDnGALND+2A0JjGAuzMNZM5+E5/7sqaAAwkqvQxRTwirsEa/CFAA4BElnIelOZxCTAB9nG4Cf3qw3m5Cnjis52tmcRSGKToQWsvGHtz/af3KfOHk0tfTaF76cXbsAv88svTC7GosFJIvPB1IQ1hUzqkWjHfFp2sPufQK50SsXN9Y9Hho1xFSPv1puFi05n0J7bXuhWopk6AKJhwx3APaJXaSolcVkmzqoRs/mcvugP80Z23/4r3efvENvMygyHErEHn4hlfShlFnH7Br8o0ZT4zXBzYZuVX2uncd3YmFnJJR6untEo6zFjDrQS72u5bQ0ymQuGANXH748mFgF50aadh6VmSsAlJcacMGxjgsX8Qanli52IohcSER5qD6izQANuiMlFSVGJDwlHh/pzU61SZdovzNqVzy8P/ZOAxHMdwW+rXalQQQW+wiihT/RMha74lYz6bWz2G5v1G22azjpAfrkRX2MRN8ebo8cH2AgNhXMT0N6xo/tdK+z0ayOmzssEEQkvkaWQlXdECLR6DuayOLjSJzQGzAnTsgOUDDoB8lsiiwgRIbBj+388OGdWx+9ScdTuwt6f6ek9kfMBg44swmZbJsVCoAJGk1679FBg+gEPgoSE4uesxE2IjZijuIcD8jLnx6OssvLGLlArfH74ZNG+JNwW16IwG9+li9xm4TroePGLEE/DNgrwosFmwDWkCvgC0jb5T5ZHm7dQZZaTCYxQsxBCPkTRrUSNeB2Zu4UgsOnuGnNTZC62a23MDwodfdBjw5Umu2BBzoYVPQ+y69cK9XPjlKL5298/otLSxmce9x0+K6oAbbip4FBCSMr/+RASZCxN9UD98v+2d8H4O5AzVy8eJGY7927d1Et/ESjnD9//itf+QoGvqkF2Wd8nZ/8yifRUru7u5zho48+eq5mxEvjz7Lw8afAhxEsVeDnu1UsLcDqNXZAmn/x5a3WyPKH33qvUqj9yi+8sPLSJb0hZf8f/8Ef/O4fvPXnv/ij5d507dpVqODZ0tJR0z5103Yc3Jg0RJWj2dJWyaXAgxiL0IvHOHuAO4YE6WFtYsKQvbUOE8AiowlUODk5OppgswSj6UA0s852gmSo2Tjcfbx9eFro22/efLlxFh/qpNw4zZCkmjlKWJHElTgaPKqZ/8kPrGzEE1k/1Iw0CJXKcyKAyCd1afmzqZjr3e/+9qcfv/3FL/7ElWuvO5QYiz8UdL/5jWYo5P/qj3+Z5JPeI5kk/H7mKJwNW1giSyGidEq3PXZ5XahgG/1Bcbgd1nQ28vrry/gAzTokzxOX2gOyLZARK9XZtIKuQUn9cLeye8RVKgCyUpnE9u5+sTwMh5IzYIeMky+U3Ra30JJS8G/VT0+lIxGE02dPaMbeLy2MPrizu0O4jS4s738v/M9Czv/4b9AzA0cjVyh1as4bqxfDU7XZCdS9gbJWnkwfb8PibFTWh6tGVQv1Uua9AMpnTthDUkJum3SGRHqdDa1XLLdBaLPHMNv5JOYLuOpBn4QTeDPsGPgRhtBdzXxoSwd7iig6IFEHgSwgHJDC2QFo0nDFHMVHsEoiAmj52WPhXfFehETDbR9GVHscAnp6DHtoXDpu4g1KVmi22ViWLExyn88O1B2PVtwdVtZMZc3FPwAQRQUVgO9N6tYXibsRmFh9xLPZvRADVMrN7iiXo8tla9A16uXjdpswBhCnhhs7wX7x7sG9XbcVMn4seCLpew8/aZ48vXzlpdWbrycX1hH35iXAayXeOHvfjKghi0ZiX5LEo+derVqPQtNLcwW4QIbDzcUM9Md0yihVivSc5nkLZlBMOSuyh1adFGwgvgSDGHfXG7WTRsscxejsRWOLOA0OZxglBo0IfiINIRDimDg6uFVNW0lHa9V+zzVVR8PDo73tB/3Pff5aKuK99f53Lm0la+XWaBq6/8ixee7KVDorAaN0uP1AO/HD5kGGudBU/QFDH/o8ATBwEJlDHIFkdY6n7piXOzW0ntfmn447NOMWZG2ra0dRedA7UPFPB00yBQ6cEa1juPu2ZquGmY2w6fAMVA8yHNPVvKV6rYwW2txYuf2JQnsxs6Mzoi2bXRgZ9LV9SuyO+CRLBiIRFDDg5qg/tLR8vqnpTgdekZ1QzkgB1mFNZSKIV54f9jQJBaBWz9UMugWTSP6T5UE2gtS6cXZauH3r4/zpkWIfBT1e3B8oE/ARUEkKlIRTMh8EkkjGYCFBNHlMj6tgOJaC+88fYHuQUTM6TVY89TnmvYTd9ng01aBDGM20vf6FdBKjhbKYSCwBs2u5eOoLh4BbvXDp8lk+T3wW+YWqI64ck1a41grRBoAIxJ+gMINzBiWNRuWqMTmQLuYYFsIFRfgv2HvIbsLEAMXQPKABGye5k4PHQNr8oSC2lT0c8gRioVjWGnbce3JQabV6up71u6nMuXDtwotXL0GLC1EjFhpZ97QaUNzgHIeD6XxBMzQDogWQTahlft3a2sKz+cY3voHIw6EBtkBgEGr0l19+GfcFwAL+DXJWAurdLjrJdF/4LmKXS2Vv8D4BNGDNjUbDvBuB6oHswN3hLgkb0ypm3D8uFh+02/VgwNFqZVNhgj4ohSLdADNZdyb9j3//D7PZFYKo3UBm5cUvlt0RukduqlGQ0T7C7jx75h/iL/Eo5poZ4R8K+LKJWCqVbNVL3XDYGNTcjmkAYjecot7YAZNwIrW8vOoLhABQEJrweV0jIROEB8eDIpQk1HgNKeMsVBtsv2Gq77UpLmxt/DPNvJeVBA/RNGIkDWAerFgeJ/tlxnYG1y9xOxaVOCOgfM5nI5ZO9ePbby2uZy7e2IIvBOym3/HizifvYdRf29z0RBNdFuzYydyYo7Bt5Bbt01R2tVQrgELt9DrnFiMXN+LHZ3U95Y8lCLbUnZ4urYKByRCmxZeCLBxySCBtifji4x0Ae4bFBh/lGEr+J9vlUsWIxLP0RCFRMh9l4oYSKRZO5XOnK5fDZM2q+fzq5dDp/nGzb7nTa2/nC4DQKNgCM/Po7u2nTx4n2BjpJIqh0Kzn3KriC/lhpxslaYBCwJkymwf63rZW7JS1SDdsjoLNAbhR9fubdZ6C1u534J+u5Mv1SpNulSwblhOfoVyBRCD+Os9UXG5AgU4XZDh4k0Q7I6FwQPXjcNIRha71bCrCRASj2s8YumCVkkzWROaCSWT78y+YQsDACk1xx9ZyBQtdkiJAEhS7pQvJs+iQ2TFbQ89VyzNgpcguM7ggbs3ssM2ADQBNBlKO1rCN6RJXUWJLOGqNavOPfut/o3cO8gTTT3GBO61z8U4e96CtKDEy5s1iF4MwvpzstRRV9fpBJO7sdKrVt7fvpF54+eZrXzJHYTWyoVhasq0IqIwJloMBo2eEhzgjfpQvGeOvkC3RAgBnHujKoKsdPd2JhXxGWyFwK99lphw2LEXC1djwQyr1JhZfdqlz9tQcZUQfjHBc6v9IA0p1FcB/sEuAexX6IFMFODRGKyuLE1tgZWXL5TQa1deRLqeFztWL8YsXRq1Kxdav+f19tyP0zW/8fq1YOjk6cjr9wdBCp94bjk/MUeZqpqrXEl7pIB2GMV5639I2bErQjBujRVpv2MmkUptB+9ShFlrK7aNH0C7agAsMJ0ZjGoxKAsOhEgiw9LSBk/hgf6i6PFS/kLSfCF/tXGzuH97yKWo8ARela3cnB7oA8Nys2VGvXGr1hsHxJACoBNJisv6DkVMz7LU9Tes/cimOk7MiGBgCnBqoa59rfWOZuA4SDQYm6Ll0faCoMfOWAJKycgBTSXLWOtJa9cOjg+3/V3vv+SRJft53lvdZ3nd3tR+743Znd7ELuwAWoINAUqJIniidghc63Yl6c6HQvdBFKBj3QnGhIF9QQepCQSlE0YgiKIkkgCV2AazBOsy68TM9Pe27y/uqrMqsLHufp7JneXH/wUUgsehpU1W/zJ957Pf5Pg/uDaUFGRhJd6XZFrkgLiXyFWFBV0pLu60S/atUyuVS7fDoqFyt4A6FI2GKH6EuE2gDEdkS/5M4A9eXX/ryM9evvf7JB91yKxWMHLboZuiNxePw/q6urw+HPQLc8Xgim13k6/7ethfOo+k06yf35ljJZe9tH3THThKh2LzYWyTLYLTCdsN6+htXxmJZSwXwsZonW1jOQjc0Dbk8ieL+cfnBA6vWCmDtQUGvWrTDfZsnEF7atEeSt29v9dSGa9TNRhOZIMWwtWbxMBLGk8cwNCLusQXKaWnVwcoMzWdhmlAtaAuOOvqD3Ax6Ai+Ew//CCy985StfuXr1Kl4OETBecOXKFSavVCrxFlQI7zJVC5qG7/kT+RjCbsDn8Hh+8Rd/8eHDh+YofZ2moM1XXnv1/PnNF55/bv/woN7uVDudwPJqCQXrdK5ePOOKJYbFwt//5Z/ZXFmFfZKDrWt6oVhdDMTOXf1CuVL0qiX1Bz/u7uT7SznaU/pWYvZUTNV6nEdzFJpHwClONxhYbwnHJhfX7enUtFvSWyUIyAHQRRdySMkAdTckmjGIwMiiMWZDu1Hv0e7P5ablsxGA4y7mdEyo3Nzb62PlssMJXZApNEdZzQg8XZSqtMabJ3VFGGE1z9NoQOQdxE/ITnHMOeoYuR5nMjZ46avHlV2qDAOeWdAPHM5tX11kgyAZw1F3KO7FAgSg/ClqZZ6+HQeC/kFLDcz6V68mLIZ7DTPSpY7jM6GNnNWqNUDAtmAwgNXtA8DlitYrLa/Ht5FO7ee7Nx7WplBW2fsEdDQNBtUhfSh8PqXVyD+ZMEtmIVLYPXRNwwTrsMmjQWd3y76srdXbw9ffvf1o65hCY4PKBkkTgAqsHT1+FPK5aS2pATzQ1duFx9rCUtgRavdt/fY4EJvCXDxwQ1rq072WvfqhOWOBgJ+6iClYjdGIlGyBujdLn44kPleABAyc89ggQUUqipDpTCsvA4CJpYLVj5co1QQST3azP6nnpB818pNuUP6AD2nzaZ7JKkEyPonPMJUHymZMRNGDe0bB3tAChJ11I1ZPfIyjxsuQKuKyiCbhLYIXwKbkbyAe5qrqiW7hMZ7oo1GnRMcbTa+ojRNQW+mYy6rFxkbEFwjXDK1WPHFbjWQyurmaoz0jfYcPpTFoVTdas2mIkTLp1LnNBJHm0OVNrM+dG3fUjhbQNGUxsbt3761G1ZwxuXVAEsQ3caUJqWOcwZIKSgoJAe7C4/H7vTrEeb0WAhpuZOoi6PLYbNTfeuOt1dWVq1evxaJRypq6GmR6cLeDMCQ2I60d3CGKsDbMUabTIAY0IBC8fJaY2QjE/MGgv1VuNOugnyPXr3/12eevptO+hZRC0H9leWn/qFmtdmu11srmhs+vBfXxwd7WN77+hW9/9wftesMfChYr3S79LxwptVE3RzlVMyFPgDy89L0HxExvSlZ6Yh3aJ91qzRVwahgpruLKuRWDngIjJaxkRkYXVy2hhFVCcV4/YV1aFrmJNsXphDN0B0Ks0KiO6TemjyNtAs3But0TuD6J84QjNJIZpWM+TR9Uiie6XqG0yDIONFqgDch9KURmUZhgl3HPe4MqAQFM2sXFeCFfoLNfKrOcSibogI45z16c2X1gsfADzFGCAVI2IjowqEuF4+29+0eFY0pr/B4HPcFJyQhcWjj6kA74TBMip121o6ptShyw2ennEVAUtlmhcHx0Qn0vlM5QIRITxkTCf2qbowC7/M5//1ax2Qw4vOGFpc3kxnG+iNglFESybm1tg5zGD996twpzaADkh8fhc7nGk1ahKF3AW/UgnTeSmXgMatU6fX24H/Y2Rrm4MkR22Fbz63LOX6n0m3ZLIhQm+a8kQ3XV9eHDjwNjmqqCuTbw6kmCTvSWXi+e5I9b9vB2vg8/+1rCs5EMBD3D40aherx7duESqqQ3pY0HPgtLN8ESa3Z1cxRUCLuZg412waHhKQh2wYXOaUWpoG9QKuAaACjzVzY9L0AcoFTQNCKiJcon6VU+xPwN6r9YLBJzQ4HhipmjUIHvDwTOnj8bioQxNLYPDr//5luc+Jv37hRb/VRq7QBKgLHx19/5ixg9Un7h59+58SFsm7SAkXapXs9RoTHzhxLOVurjnebDo8JCDFBweDXlXkyNlpIrV86ao6wlQ87JoF44icfJHjkiycVkNDRs7u/f6U3tDZ+Cc7xMaRT+ZYCtSWTJUHHWnTSJmHclolA3FKY3kJv+uzZrnNX4xLb94LAwSIai4RCmqDlKJAhQR/Yb+4yNNxdF/EhEW5JnqB4BntAlChtGgPZSdMHsLKwsrayutxuwG9bDQGDFz7FFUyFh3eRgAe3FlWFnPgmaufG5bS5kSLhT/ebXMqFI8vi461N6Xa0z8sx8fjooEgec1ps0FNd9Ea8/onD+gTheWV47LjX/6pUH+pROiqNkyhuKRx/eL0+mXiiWDaNJrMkAWzK/DrYfe4PTZrNO/F3VayF95TPWzwc+nJbvD6qFLhIADx53VQppSBh0OoXDw42V5UY13+91ebSW1ttvVtcVxeagaBtZLlleq+ILxiOdequP/Jpf7BN2F8AOgSkTKDEosRogPCFFxlTCAWTigkoQhhCgU1gzJ/kTnGbAz/TglegkeHQqA3zgkuRiGyMxPR7kL4LKGomc7jFgDZT5YI+zwvzD9qPLsQvmRwHvAAJGC0nbY4Q3n0AAF0mAZBBJYKoalA2RdPkrFws6d4lYXvm9+ZP84Wj3gTFz0Kve7/bBvEyHClhfLd0pEan8zqOFVJpYN+bWYjb34gvPDXTVOv3sX377lZu37yQSIEemtDI4t7bA3uB/g3bj8Q/exn7p9OpXZvbLz3/m8ImE4aBxoLg4mNTIUMcCjg7FyIH3+hykeFgTfBliuR74lAHG0mJkQn/SJvCFIq1SSqVYMgW/RR/sC1sLKUlzI+vIS7kJn+Q7RZqtXLyCm04GBLZsYmXETZMrcRqBpkPhZpzOnNENfjQqnaZjqGFp2Qc9wzFphdxjd8rabNbybSRwYyWXXMyEv/j5a33ddVLsBNLE0ukvYAEiIvMFeNP8h8p8kqKbFxctfYdeUulBRFkyhCVTWtN0Cddwo+69vBPfuTpTgepQltxp9UsC+pslMtF+y3C6B9PeqEPxv80ymFKD4xrOesA9UJC4e+Yo85ovSo4t6xsLk0GLumTyIcel6sLiQrU1rhQGZFyA/PjsAejLCSqRKyQ9t3n2TGbBf3JQQH0YWmtQMdxechPMuqc3ttAtw+Gxgsg0twYDLefimMCNRqNYOCgW871Oh4wJ3Pe+0TRGw1ySLIRxiJViZbJKNFdo1cF+YA9mson8yUm1dELFCHk8us/OrGSAOAVjyPhZCi6W1XwW+sANDw8nrd4sHRra9FhiJZFOQ0uSW1mjwxsVXQEluLCY4x3xZOrChafaer1XKvrZxMNxFOFDlUSQjipUvY4blfIID5JyKvIz/GeDLeZ0XY52t2g2lBb3vuxi3w8TN96932w3vSEnZ0Yfakh3tycwxhOy0LhI21HJpXpyYXdWIctGmMpOOGOst6MBuxtNbfdhDtGJIBgP0FF6bPTNZyHdwjdAyzAViZVVKhVOMruci1/yJ36DU2LW9/zoRz8yVU6z2TRdGV7A69nKPBa/wY3jeINJ+853voPWAa7GC7jQhpgYzAYZEcIh3lAYhFA4ojhOAgvW0E+99I09o0388KBY+PHN4rXrz/2nb/2FEgx/5vnWm2+8/g//3q/7wJDFI8uTcfpR3uq1lbw0mhx4tY5/e5Q4sxnwB8xRVhfS5DdQTIRogLmD48RO8AYIKkbsnmocRKMfRKPu83pQG71S+d7D22BdQ6D9gKfPLJBn0/zuueeu01IR6wImjGwy+mDXcVRslCrNaPDUm4HpR5QB4QVyvhjG1B3MXRuCPJj8GNTgUTCYeAUiTEJ6iDGrFTG6lFsia4U1M07QKGCmEao2xpnFBRzauYnNdhPhaD7LSIqOx7mo9e996eLGRvDPfnCvpY+CSzGQQ87pyIHrAS27bcp2pWwXuHC7OCASsJiKPvg4/+HtbWNGIz9yRJN0JlWrd6nupTssuoEaCwCvNKA0R+GspdLrnhmN1VqJtMe5a4+03PeOHzwqlwhy1HtUQxOEwtDnCajSH9EpvdtpFguHbCBSQKBiMFhG4V40mvAncy7pemntjAbV41KrXAVGYI7C25HVUFW5gTApCdvEzR1jemlqOxRS0M2AnFpt2v3AY48+AtoBLzLKhdMHnxMgF0s8GkbHYGO31TYNXVw+CfBiSRDf/7TMgClnFImDieIQygkkMd380EsAwvAIsJ+BtoH46dOLHaYf0UAC4iJqjADnTVKLLRqGGxHczXwp5C/8StZxfn1868fsLSJMhF2pzbZQJNrrHFQfwF5l0TrTbhOQXbs72VhefHxQefedNyJex8bqOvFKXCpjoFJmBhUICSZ6K/S7gy4N0Vzu2epqc3cvc+HC5rOXzFEQcQgcvnIvAJ6kSIqdRiMZryO3QPecdLfVJHXh9yMznQSTCT3h1gzr3YAn2B9MEYD008abkc5B/oAmDTLcvrCCyT9vz8VDyeXyhWnp7BMz2K7jaiBwCWt7YksL4Fr9RuMAN5j4IjldxCV9kMHccjtIG1Q54WUbiWOXhyzd4Un36vNfUXvehU5n63FrNuoVquokkjZHORVn5FMn/cmg3fdO/ehPxe1uqB1as8LO0VFb2FpdrR6Kn7f0XMbB1tWElf7njYS7NgjslWuAM9zwJ9l8GtBtoLKSBbUFcXcJBLWpX8amOw2agTxG4AeDyS99OQlRSu34XkgJUtq+djarNIm3dIMKfiLKyKsANUPouolC2DbPLvm8s1q5AcAvt4Ab2AE4xoQTDGDTdJoqQS96pD5BGkPxbdnd2SPyYwz68WgIyCDeIHXgHih+sGho/0WOVh9inbHp0JjA3p566gJOGKb0wcHjo6MdfdAFZ8DQ2KrYcDgXAtglCEr6/kmgaXUxmSgWKrMJ5VmBTPCpSxe9dBGe2unPkUimUTNQeiwu5ag3qlWrq2trIyNWnU57Aw0LAXIzzekj3gwWi52EScouAQyDgiELhI5BeJnLowOvGFZ9w2Gj2gwvLh+Veo92ygvpmG3SxYOQwmkKsN0+eGYsWrfZHVd0ZS3t3YiyV4z3tqvpoHtjMcPSToctFH6v2WkO2tJMSLNQ3+PSm+Yob7/9tmk0cbqZNzoY8iOOCz/++Mc/Zr8yE1tbW7yYIC8gPfBmTAg6aZ4x4rVTtJHIoHnkDfWDA4Qk5e08ID+ePstAa9Tq//EP//hnv/b1L375S3e3t0HnOiDIcVgidAJ1WdRqKxzclC1P/slJoQXz6dCoQNL6dP0j58yR/qRRzDq0dCy1QEPYVAo1EtDFoSDYbo4inR4k3A2tXN8hUCXpvs1J8CqRQJDcX4h5Jv7IwbOPJnc/vvXamz9MpuIXL17MrK4QV7TZGsXjUnutmV5dGdh0SFHoVB+KJzDCwB9/fPeBOQobR+L+s9HB3r7abl5/+hro52q9vbu7F4nFLly6xJPh46FdMH8kFYUzIFXbBECwcylol2ZpAEyqVSCtxuLCqteDqIVtfh7oNcdAHLgcuajl73xpaW3R+87N6kGnt7ke8Vh9mOOpgA/2fvKK6PZ2o+CgH4UzcGYxenLYeO+Ng+NCJ5QN2Az2yAib+fCoXquAD2ZoktSI3ZGbchI0x/yy02OtNMwNMw5PyEnv1/aulm+9Vz/OD+mF29I51AIVNQW3RM4IXT569GB3b1uqM9wu9sAQ4HdHpQmC0XeNba7NtYtRR59mkkPV8C4q5igUCB4Vm7V6P6Bw9FkTIAz2ZDQCyRVpAErKIDFDnrKvatUG80VClXQZViCQPUHb4UipPawZ7Bg6kHOow4hYhfIxTgDlFqd7TFQLmoP3gw8mJibxs7lviBEgOocRYHCR3iEaakhyeiiYueUoCmXu0syVPL8Xd0hiaCKO53qGd59e5VLeC2jdE+1QzDdSAyG90Rm7YtnLz11rHD7O37udC2f07YLX76k3W3fubXutQ5IOePpqv0E7hzC1RIT/Z/Zyt/fg5HgUDfkGpLF6lFXUy4fPLH/dHIbThI7BC+SOeBb2Do2sjZG+ns5cOLdGDqXRUJdXcuxpTjsVV/popPWMocXRUA0K8trdbrlSV0euIcWwYIRgqJojimgcAt6CDojmKK18HkVm+MleukgUEX2jPhL8240bW6n00lJo6MKHpP4eR572a8qk3QFjp6LXHBNaBHl0updpvoOj6p//xRsLH3+8cfZao1ygoH4xtXR03HG64uYop2oGLTYzprt38plwmt6xYVeIQwkHk06IqjNAYQGc6HT1kcM/7JZDiisd86eiSXqe3S76djqT+w8PVs+uKn4HGR2jayxmEiT3jqrNs/EFKmN6fc0cbHFp0+sOhkIJwi+H24/01h7t5kQVT8fog3JgTKkl6gMLjS7rBEvIJoCSBfSoay32N7ZIJh0ptyies2AOiCFps6m0bdJavtiihyLN+VWrQYhVoOoriCuNY1nEOoF3ASeVoz9RpGUPiBpQtRI6IaEgfBL8jYXE/cYwnxidfieRzFBvSb8Kcnzscf6AmSPVjU+WZ2FjvbSzFw8F9sO+1fNn09kUdTDagCw9WBZy44P7D7dWN86Xq03iY3CTdKoz3evrEGyltZwDprYoapSwHj2zcBpow0d1PtEBHgpUPULVfJbmwDPTYf1xD4mOhBYL+Qq9OK9ePj+sdOgATAzB4goSUZp5A6REqDjRmqWlK4to03dv7+yUOmczgDBcF9Ir0luSuNY8Dg28otOtk/GbHx8Zh61suh0gxy5fvkyq//XXXze9E0zv/f19EMwcb9QPLwOygfIwTS058/NaHBSPqU6QpETJTJOcOhsz8mY+C+VmqI5/8hv/q9RQw30CsJ0mbkclENgRR6xSPBg1q7Tp7ZzUcHNQ53Bm0sGJphqkuiFm0jCjyNNUy0OLtnI+l+Cg0v6L0grFrkuDjVOPGUoxhBHiPBgJE57FUqBTF405nH4gHQkxvyidwdCwOdRWq9fhoK6vnTlbrjRu7rx/6cpTzzz/uc5KjcAKIFncV/CTIpqR1jPqFpVkJlM6PuBxKP4Aemlo6g9fe6XTqAZc02K+UK3W9w4OYWvzBdzBSIw9TP2BbGikm4g7mzGEeRaDHtAE2md4dHz4w9dfA1i8vn7WboMADJcUkS6RN3PG7O7J+WXfU6vRP/3rrTduqReu+ZdD3mHDcNJTjGzohFoIJkXPLeZq5fHD25XHD+uFcrtFi86kYg3Qq6QTCVJ4Zy0e9UFQymdKASBCiSAdkaLTPUZVeWJkSRSdR+3SR+UPFBtqTHs0quNhA+WUJoa8VGJa8nrSWRgiQNvZHnzPfuB0oHJRHORJODu60bQWHhSaZUy0zeSZ6ELisWWfNx4cFR4dFIGtRhUYEYRuC0OUmCE5BnhvmRRo6vCA2YpsKrFN5weWdCJltuwo1pQYmqKEOShy6jUVSQ2qGSCmtC08dTKxcKlvoxsTXhzBM2EtxGcQghCeYn66HS64JsV9AYxmF2oPcR8dc/3CY4rHxf9F4/ArrFB0FIoZh4dfPAkyCkDJRkXaZNJwjDRynm3anQ7dq2c2Mutr1cJxpdrSDUETB0jDSgNFezwaB1ZKsJy1wO5yWwPwsRar9Qol4vkj+lUGKQeq9qtBh3fvYfrt95kuLsQRlgfnlpgWun4667FnAtByOW0UshgqpSOBUAzmyiBAVpQH7cSJhnkDwCnd1KuSGsf/tvsyVA9NHcTkITVhHvAbAYrIU5qjIG4I4kVCpPVwDQW4jMLXCMvSBA+uJrsvoKTWNi4RQTl7fq3dosd0s9GtG9OeMR1iEcPSF3UStXuITn/44K43fvbxw5ubT52H19bl7gFINkc5VTMUf6j2vr/vbw+6oRCLDReXW9PUZldV/FHF74ynU/nSbrHUTgYR7l6cZGQvgZvVqPWDrZN2d7q3e7yWpi9sMvZ8rnVU8uraemYJ3He/1qdwwBxsbfkp+LVo8ol+Xlk5Xzj8GAeC8K7appShAZyODom4yKQsAVSw+oQW8selvagSjbIO0GOwy6mT8ZFSpU6FCkpyGfh5EPsuRlAzp4+kqjAg4ZBKL19a+wyAuMM4Z0zCbj8pfWPY92nuaVNA7WKwsOHE4AWyTUDdTW0Q9iae4flz5wk5NQmjI8KkdBKInYXuZ1IfN780JTFaXy0BHseOCWeo76NbHLZEMo2l7x+N+p//whf3j4pEFcDR9TpN+md3awV6JRb1UShKvQsdhJgG+BY9iEji1tJ1ij6peF1EXkAxzK/3bu6SqGCf8BhHRum40KbF7NH+YdDac1jrQ9VNgR4ECi53gI/LRJxX6Yo0qudPCoP+WHH76U7d0warGxt+mk4a45g3kgpeaD++7/AM/EqkXjx9FhIwHGNUwjPPPMPhf/HFF9ElJnCZ3+PN4Jpw/oCcvfTSS0gZ8i4cPy6EAn4Me+3MmTNvvPEGUTXcAj4BWYpm4ns+h9+bz6K2qZQYvv7aD6DWJv1OKWzY5uhN7BcuPRPzKSjW7GLKpfUury6kAuGFoO/LV89DYXTp7JklMjReX1PVgg4qjCz0MQ4FQ7VCVbaIy0MzZd/QALVljkIcH34g4BsILRf171j+Q3iMyXH4QMMS88FxZGWpfyKLQHe1L117hrTyjU++dW97FxrPM+eeWlhbK+8/RAlBIKtx5PCGpQrf4vHTEGzZVDMTeioLraROYnb/YPdP/uQPs+lUu9lZWV5+tP3o+9/9rxeuXjt35WnqyDnPnGoqEDBK25iO+9ue6Zheobc/fP+VV19BFv7C3/4V4A9gekjgoGck2PbEbEanPLuWwn/+eHuANXkxF6M0LV8wltY8mSi7LlHrVBPR9OOd3vvvPYJolqMaXgq5xoNmx9Js6Y6xhWdutXXQzDgxpFtFI4gOsxEHFkt9fhkNe2AWECzJsJm/tefNLgx04rEDCxNFoohjItgsHIoZQBhyyydHR7Chr69vHh0elUplBDUJzLahFVt1GnM5vEJXrtY6X33myy9tPmtMu9+2fI9xBDUeFgboAGEOlzsUEJofRDBMgLhDfDJoRoxukedIQPCbYNtAkOoadAw+KOimtu5UDfgUTE9yt1Clcj8op6E/gPnHqprPck35ntferw8yDT07GysDcH665iKKgWXpm5OzUUQ6o1MkP3hkHHF3ECcYkCJ6xRpgosQTghRBVNB8KUQi8xdzCL7aiNLBquewG30jkorgP9tVe/P4sIA9PhidXd6gKXwy4ltbXm5266CIYvEoKV8MVtJL0PGxqW7cvr9/mA+Cqm11wCVbHH0QvcO2Xm7l7/+Xbz0ZyE4uQBJ7eM2SgAElCu5OYvjb23sXz1/6zOevAw4gaYMPjgCB6JqunfGoj/JeooKYxX19TPE7ATekPBsYa4fnoDTCg9h4Us9MIabRq+0XSn7s2EgELQ2XBXBxgjmTsUrWbGRoB3s7LSQAqZQJRgZ44Ro9aqlKQGGBknY4x9efuVas0sXNaJRK1A5SBAI/lgNPWoKtcp2qGVG2g+piJt2AWSgGKMrRHnZj4O8uXFScdPwdZzOxWuHesFd3RxbUqZMIftA5dAQTIM2vLER7UwjNomklaYvYnUHXyvMXQw/3OqWqU1EIPo76p1FgsKbzPKLksVbXLzy4n9F6dRC5vc4wX2gD38ZA9RF2Bv81s2p9gvkCL75/99HqSkzXOtRrzRwYfRgmJAAlcSVJV0q9phYoJj3gkueXNEM3NNAnuCttHEvs/6EGN2OTjTMs6nqvrveJ3soWYpNNZ8CiWEjsMoSg2umuZRbAA3TqTR9AAKAtHsJ3M2JfREdp4dp5ktTKXvmM7prttLRkNKe4IrwM+B9IPmQuZgtGHvRrjca9WDzZ73SQxWgwJzFoeN5s+jAan1odRFIBBuGgYjxh07kdY8rO4BFAAmOMmc9CbUsH6mDCBCPPUJ3tHlearVa5Vhu6NY+HUBJugTYdIE4R+K5Mgtyb1T6pTf2zYSrQ0AlDG14laPWEqzTio6MqrZwbAxjx/dA5zLP35ihQKeNXEa9AqaBF0A2//uu/zjcoEgJfXPze9Fp4ulwud+3aNd6I1ckLiJnwDXMITKBer4MuYzL5JZbpm2++iSfEG81RiCsTPvIA7fT5bn740e69+1HaIZD7buoQur8QTSU9Lu32vb83dQRUY/bXP/hmFS06sNQ/TtnsZd+JJZ7ktIkxW1cHH2x3SxWXPziGFZucps/SbqXMUcrF0mI2K86h1e7BmeBmkJeGRSpjAT5MYSid6pIFAxI7dAeVhdVVeGmW1zfrLQrCaGHsg5uJCog6XgstLcaUmIQXkgOqqrCPqEoyR5lONWimWfQvfvFL2BAP7t5E39BYsFyrckZbteJIW5WTPhtIaIbs6rB9VDi88f47D+58Qgjqv//5f1Y1g17un/v8F0PRSKPboTUroBR2MqkegajMr689mzuzvvjq27sjffbyF9ILMctWzz1TFMEtW5zYrwtLy4+2Gu+8/TCxGM6seYyp0WxNrQNFs/faevvs2gYcyEd7u3ILxNNJPvu97MwB/FxzMidzlMLD1mb8LFQlHXc3EV1o6952s+ecWhtAd9hfUAaiqoEneTznzp+/9NRlzh0LncutkewplStoC9RFHz5Qrb2+uk5FawYqIF/3p5efy6outXf6LIi6i09tVooVDh2mQEAJ4P4SmMW4cfQo7nSyhYjNmvsNXiUijKiaAR3vldjJUR7UCf2Nk4kkRRQcFo5LD+qgiYfULDYiO9B8lrZOjOd4yXscG0Gal64Owu5Redk6HlT9MyrOM8NJnJSDtD7Wp4Tro6NxUO8qBj2Tra6hN6DZPN2Jeyj95mXV5roFpS/foW3n/8k4iy5XNpnVCfg7fBcvbqYXc89aA0QtKZUMXz0PTobjguKCxKRU8v/qL/1CNpPOF44Dd72iqsDraHqr0eIEjlQVoBF8sWhN6gvbRm+mTia1vPkszDlzwKMGgwpWtdwDWR1dJ+m7lkxfvHie4DsmjkT32WQjI07eZWyDJwECLLJvHdUoVupTVzaUgtjQcFEPSIUvtpHQPHOcT2FZJzsf2oetUGCWTGSVAAqCptlWbdTLRrwLkH4o7kyGt0+fe/5p8Ep1SiVa9WG/bZ8MlVg8EE5jz+u9VrNN2Q0+gHvQV9WGisc7XlZhBfeexv6fqBmSIJtra8GQUkU3OAG9Dh1xT8QdMrpjmNbdEygAYj1/zhfU6S4zGTSKLcdyEoxV1BONp3v+F2PucqeTSKVmOUflUWFCh9pyrdPor0USbsWVVRLmxLFOcyyVGA3+QCQSzx7u3qEIq1zqQ9QFZJQFYNaQXbo2FuphCpqhL4T5cagFAtNZyNdsDXBWIvEgjj++tlRGC4rHubC4DB2JOcr+/nalfEICnFMOzw6aYyj84mMyZng3ok54HaU3cu4wZ0TfYkwhQNnly4sLl9dX0TeppRw9wWk18sFHH7z7zlv4Q3ze+sqZsTHcmQ+zsXIu4HF3yypsf6mUIhQmmqqB+1xaV4HrjfUQgBmSVLOJqjYHgGunk6XsQmetk7W5jyotQJkIC0IfcPri6gKrhlGGneCiioqQ9xMIAJoU/cORo7gHQIRmTEjCIbZHdi/tY0jejWfqTLcBlfJOZ8SCibiPdcrQXARxk2Fq26Ph9fWDcv+DW/dDXn/IF5q6ZxupsL0jEelkbMGcMYwGppqp2NnZuX//PkUzX/jCFyhf4K8oCYIVqA2MTaaO75ko/sRXc+qYNL6BI+Dk5IRfHhwc8EocGjwe1BW6ineZo8SjUV75D//+rxGz+qs//28Hjx7v4WsMZ2qpnrVbv7Z40TrWZloxODTcBCSImnYt+IXDWMAGgCnoc6QTcEDAHEWz8nEo6MnGLQspuPusOwVcRkxLcxRwD1CX4suOBxT4kfdyacQBiLFi2lEsJ5QlUICzb6RXBNuaSpSpfQgmLxTExPYwC812a2ixqr0OuT27N3T16vVMbuPNH/2IODsH3RyFjjUg5gE5ASFdXMwd7u+srm+GkwsEbKlZHxsa8ndv60E8kaDj8cHeAQ1aDk4OSjUa91KPHGe05154Zm1tnZPZpp6We5VWyia3o2lByzibSc+rH+ZfuVFfi3riUQexEwD5VMa4gAka5XRu/f7D0g/fvXf2es7lH3X7bW0AEoy4O4iMMa0TYG+pNyiGVCz2IR+K2e6GJtZtqQwbJFUIBpvPojdVwsgkch4XT5y51KwOGLMxL5fuSSWl2PWTYMD/uc997vKlq01OIIYFizqd+VF46Gt8SsCwaIbZNGzzrUIoNZycS5+LqdZS6WFjopqjgNcguZlbygwhpBTXgZ7QcmGGJ+I+xCgpTMQDoTn+CvVZnA5UtFWw2SIhBb6eTquRTSdjkRAHd4Al3pJIL/LX4/IScaN+0xxlS3v5Ue9Fn6MVMD6EwBbqF4nIZzcB8Ay37wd7U+Wc1+GuTHo1fZqgQjDscSwH45AHDergev3dmKfhUtoj50E3PtHq01HD6QuCoHN4MhTnTCd9c5RrqRWyrd2FNNRSQaySgH91JRMNBTgLEl6fXzwg+KN0Blb6LAchGgtRhUZNJb9n8nAdFjdyA3YUdhI1f+RgyBopXqWfpIje/ARikoToZTZIJ2M0OV2QiXC6ce+wC1Ett29+glxilnApon52SJoCga4YlMTBUDnTneNaa3Tw2ZVNWKhA0aJniLfgO7J2n/p/j26/8TMvf2lxaSEc9C6kFQbaOyjD4wXs1uO9Wmnrl5/O0HGADRAJ+an9xurGKwX3ABw3GItTdmhJpO8+2kZktUes7IQERKfRKZebsE3GEiHzWU69GYoIaEYNC006nqJ0wJ6BYmgYXUpaSISQqHFGS4+PMhtnjCnY5OnC0jnbOYhs/LrLiEZTDrVjafRLrfbIbdtMxzwOG5Ldv5hMplywlg1wvYDT/c0lrikxT8nJuX14vXyLa4KpQv0y0GJq45wuTM5Bs26EoxCLOagX63cm4YAfj6RY7FCKha2PJS0GuItEzoQQZTKdBdVmDnLjx2/jiRMvxm0EEw9RP7ELGCwplyWsC9SR4BuBMqBINCphybGnWDYkEZuepOHundvYR/FYPEZNE/XnH/y4WinREISBWKdkPGaO8tq3v83+isRSTueo0aliaoBY7/XHly5eQ4ZRUoDlnoiE5wQ1Gp7ygOw/uCJtRGytW6sLVYbDhXz3UECBhU9Mh/KBeV9uKPiIOpujyLgGfaUg52CrgcwgaGQhDeoLZ7onpaWst91vgXixuaJkn+jONpo5gCHYXROvbsDUEs8kPLlcUXc2evQsIfuG2pj1cM7VHrcUCZ3agP/+3/97FADpfbwWjgFIML7BrmSLo3GhnwE8RliMxD4KhhdwMW9oIF6AXOA1aBcz7c8b8WB+7ud+jr9y6qAP4L3ms8hXZha8m82ZiCVIiuZredU5cKc9UIlN9/eVGMB8eFhxyCZT+kOEF8dBP91OIGqo5A+6mURciTnj8dTVq54zG+Ow73v3b3aq1vRh68ufey6YTJqjwG9CQS5JCDDxlVIfk5ibZfGaVM92m7aJAOxo4QBPqeJROKs7D+9UGy3c4mtXNkloH+xuw6sNtawKMUSzd/bKuYXcmj9qtDr9e1tbhUrVHIV+YmwVYvRqq/3Jx7cOD05It7zw0pdXN9eX15YFCX98tLv9WKVrRa0htHsYMV738uqZVG5148K1eHoJwdJjS6kSdMcrlHJ09qtkAswR5OtHD1vv3z7JZeIvP5uhwKxZakOZ5Ie9QnP4F0aPd/dff21/7VIGCoUGGD06OHVJJuF5w62L9+LeelAe9UHhh7HNYdtCzTQbKhWj3AvpEVbNHKk71A5HJcCpj8vlFUpENSACA9INoPxFNTGVEB15vYuLC0DCAIBQWkfWDf2NDcFO4J75KHII41ZnUG/gIT7Y3T13NthXi9pY7Vt1cxRi9xhbRHhjYer86dEgsQH+1Go2+wNYZNoLi4vsQAwdXCU4HDiV+DIQAPv9zgsX1jc3ctlsBt42xDieTb1Rzyylw+GIAxpG598UM0j4y+bsWXI9gNsawJK6xVAOu88Y1srQfexpzlw76/YOxUaGJQSjgndqUX0hq3d2ZOu7bF3XAPHicvbbjZrhcdDaQu04AkCtIy+eS3gttRvHp6g5vdg8XNo8PqlOjyrTkfPM2uLqMi63EGHMHVH09wREXK/fjsUi+LhMEfdN4ITecXPqc+eLzz0TCQdgJgVCToaw3W0TJjE0v9roTJ7AfxDcfObch0GbS3hDfDZosSFeJE9P0RSsboTcyTfTecWHYwfycxRUlJEbjAlYR1Az/jvbjy1K7NrlC+SMOZuYMi5gzUODzIe5LuyYUrFIrwrsEBLDmF+j8bRar1OvSfm53eE+Oth3eaGj7Q2oUrbxGjSRhOLPhKB8Bi9O7r0LeQblHjTSIsYssdA5e4PDClt8zxzlVDRfuHZhO39MMjAWC4/7s9xn14f93nHzMJvNEd8N+sMuH+fdE3vaAXWC3RrPnp1FPYvNcsNLr4f0haw2aQ2pA7Z2MJ8M10gD59NyRgIk6K688PzR9pE52Pwr3oNsTu4mnlyAjZyGmcSJIB4jvd/rVnx4FopjYDQgTkmlIt2WUcm3qSqZjp2lAkqyzfkEDkBKhroEZBnBs2QqR24QG8scZTzSGvUKETdEIIFIwtEw8ZLtQ+9wngmVS46PnSBlkPwsFYXkEubgH5qD9qgJBG5xeHQILzGvh/CfBZDdiwVGqBo3an794NW/pgKDKtHDk2P6IFDHQ4p5OlPh1zo52I/Gg9BesCJQX85GQzJyE7dPNRohGt3BS11r0J6ImLefDgjg6og9QyADhRPlNWLYkKvn/uTCJB0QnqZOmIAKkATuGwIVTff4YyXIr8DUCARxEomEAOCht2Frl9YNeg90iQ0VHY13KfV3uVfOnifOUK/XZvbxcZuayllKiZ5UEK9yfe1rX/uzP/szVVXxQki3ks8nywJqmT+hKs6fP8+ZxyhDr4smnqOWPw1ToCl5GREzomQICLQ1Com/8vrDw0O+IUnDC04vyjVG01ajFkqkI5ncYe2E+sWV3OrqtKSc1AixOgz3UG1Ypu5xenk7noIc8epTq4mQ0tnaqpQK8Ug0poRjQ8ekUdMsCiwjhVY3EPZbFzLCkz+//EGUBPgGuknMoCZ79Hibs0zyrV2vevRWIugFjaMPe8tLwbDPpvdJGPFfd33zDDMLnye9/9hbtI6xUWqSC1//7Bc91Or4RtefhyYp0n37HXMUKW0iyg3gHWC2EkEqbm9tPd59GE+l/aEYEHM6RFCOs/tol7joCy98hvQYwRrD6ohmVt1Kqt/HEUKjSGku6kV2JRtLXASpWj9de4vl1h7ld95rZ5SLZ7yNtqwu2CvwBQSxuyP/G68/2jyfwR2uwCM7mzXUoQW3fWiDyx/2qzHndTrA7bfYhnVCMbgl5LzBTVCKA0pYsMinCk2bjt6v3j6pFWCqBiGPc9DrtRtt7OKW5MLlgcXTpXgZNObqam5pMUtM4u7du4eH+0R1+DN/5cIaqKsNXx6O2E6tWzjC34MpC9jg/CJWg6nUGbRisO5QriQsqgbbTKwZiXBaUsnkUxcvYhEgDL7wuc+WCoUHDwpeQgxWL/0MgUHTgujgcI/ukQ8fP6Zp5PqZdUxyrHvOuAlPYJxe6x6xFiBzVvX+rF/nyENo3y7dtjWbV3PVvf1m/THBgVaha0QyJxMlSDC7d7zvGMF6BV8V4tPSMeB/NCBctnodk8FMbU0u5Ha+Em/4ndN6cfGe+TArqR1dI3HLPIxszlgUBk8RC6ID5UJSCN8BRAvz3/Friup98Im43R3EG1p592CfnLFKM0Qu4A+UmlvtrZ5Kcs2bW51/iHwMIoqCXz6VQy7bGIOS7jt9SBNYGNExMOkLyq/VdFsibGsEiJvSQOu4D0XTzA5UmrDJ2z/+sFopX7x4jko+O86sRMvtEPCaowRCmU9ufkI3XsFAzbcgkLJur09KeNQ/DMYiEBzGU0sAAzSh3W8ZehcC73arHqDxqX4ymWjuMbEoAgQCCSHBjfaLKoFo2AnwctbbMkc53QSOjcmV5xboTek0FPcAGHNZt7Y8xgwMgHPiaraPBtRe+NM0zso+nfD0wuqgsde85/LNVJ+V0Qf++sW/6/X2s/ViM70YG/VH1lFQPaoPrXWLoq08t3g6cfIPa8C8yX8ruQvZ3LmbH74ryW/o5qxjiqyTS4uc8IG12urdH08GMDy6YeWg1+gADG4fXUs7DXL1ZHXhFIEZD8aCTCQMYZjxhG8YZcuh4LRgheGSs0GxAlBMWI042uxaot+CiiQ1g0ahR+/hIdhcwsTUeMIm4iA9YlfQHMT3DUODCQOLmKOEmqGzr9Y/tc4SsRBq/fyFS1evX4X9QcEbc7oeb23/n7/5L1/+ylfPnf0sqTDSwp98cvMv/uuf/9TPfD2SXKJBh8tDAXZjc3MDMML7N94RsjVMBcUXCpCUohJRGkUQyxNkzPwCBsuqIzOYtn4PpA080ngPYyfRJKeX+kqfL6xBviNRN3aXQckBdgw4XCC8Nrdv5IoMZlju4kop4RD8RIS4sFawWHWnDzZncxRUyy//8i9/61vfQm1zDNAWFLugUZB9nBD0By8gIIYekgmcB9BROcCN3n77bYJjzB6Bsi996UuEBYCoYTTxMgIFvB7186nVjJ3OJEJ1XW+0SEPaA9FWtxf2+hcuXgvh4099nbUFqLtC4amSXLutjf7bRx+TGzm3mmU68L+5McgwtFpj5972LK60chlCjF4we9mkFgtppab5LJjivb6Qq0+sg0KjdlABNQoxrIF38+zamdxyjsrkvYO9YCwXTtBRzu3yt7zBHvWznW4fP4bcDNkZmqutnTvPI1DgJlUZYxvI+zObm7Rs/P5fyjgAUQiICrvW2KlEgvVW0+X1DEbqSfE4OZ2dPZeOhqO79RqxqkQwXKrUD/LFRGbhzIWn4K+mCAoCZzE/hK+Moy2FjygZNIwccwnlniqAZsdIKu7VTIisLDU2ywsJoGqqVoDx4bXv1XzRkDvouPHRDmXbOO99HS+Ork3ck20KmGo6XM34//GvXoGV5D/+l3vH+FRSaTCPSVHbSOtlWubMLxypk16Zc56LZmGgabYbXZXYWE0KuSRDQTmh/8yZs/i4CDUvYNCZnUW/f/8uAKd5Ch0AI+UEWNeTvUbZN7JARHof9o6ZZ9MZ8k3d5ih0oQaqEvbHFhaWwJo32k22FmY5KZ9oFLAG1X/9aj7P/JxfXkpQYm1Ncw45INiqzNLh8cnjR7v5UiVPdZimP3VxA3jIZDBmO+IVsVHNUU5u/QvLGOFO8FP3jtmHMyVI8i8RHNv16gO91LMNLJmUnTBJz1Be/pz63o/9naZ9aamneKaN2nQcEajDGEAJ1Hu4aB7C2rZffEpN+kfQOz+/3PyL+TALzz9zvFui1NFFsg9iAxp5CFEpWae5XBO9O6OFFDWTiB8sCNYTNUMOn9egezBq3//wA4HVTEm0+TFxr126Sl784Gh/fYW6ryXzWRCRcCjiuIiaoqEKQoDzA3q708MdwcomNkC1C6AhQsK4F7ycSSb6Cm4A1lmackE1D9AOAt+t7Z1ipbJOwGFtOR4OEp+HZsEcZWnl0hG5v36DgnS0F9sQ5Yd0pFvWB7f2IJy8dEXxKzHSm6D+Oqj6Wp3cDtlGqlOJXlJUn1nMgHke9cEMo8Xol2YliohrNx31E/+fuplPyj90NuPElDJJei3bSDI6DAXLG768URVshy0wjnW7PVsqMWpXbXQkwjPvgEpzKEtg4yuVZgnYPq1AXRlnc9ygaSlEdeFoBPZluKfJjZmPNP96anUy+UEllls58+GN99htHivcuz2UCjH+iV0aTVB4BSyYpLgSUkj0EVPHzArTWyLkY0/D4TqzBNAEqBFqqWVR6RQ5v9gnEtV1QsAGpwAF/Jw9Q5I4UhkDmJXFc0pIh8TO3Ni4e+8eghULC3dCTIe5UqeMH745ml0WiwUJJHO70+nJ8Z7+RJk9dfEcSbZqtZZeTJFdYRyfX2FLffLxxz//jZ+BTJNoAlUa9AVA1DK4x68AW2t31UqlimtZKZcoS0mAE4h4FepRAwDMpCc1ZIm0QhQ0//yiMA1zj85N8OtgbEHKoYQjIEeplXIEgvnG8bI3HQj4JiPal0JqDNOPrdwy2oY9iBPrCGhTb08dYPp4IEGR3BbhY4sT3W0DpEctCaEOuQhz4a985jOfWV1dFWk+m3EqOAbIwE/tRDQHv2SSeD0W2B/8wR/8zu/8DtAGEjlMJhNIYU08HkdO8j33DAUAng1fEUnzQcTAQNTRCHSidY5Lh41aNRHPUGWEDsl98+vn/0lmpPcwTB26VreEbr/9UX6su7rdN/7THzw3cp394ldzV66FYorh9B5YRu+ptVufvL924QrBrPSzT2v0t36SAYKHmMIkugXWWx0Y0W2Did/ukY5aLmd6ZTN39gxIqM985SVCFvjC7LNAks2sEcfLkfKBssPQvH5vJktz6DD+I3XIrB0xcmGAtUQuXzhnPguGmzyLgGQdS6sLoUSE7nbuUOzlL37h2pWr9WrtR2+8+fD+A/Z6o+GE5wEB1KirzXormd4hALR57lwilrQ5/ahx8QOQVdRDI0OEagvJcio0PbbRi08tgD1sdSG9trfa7VQ0zjbeLdF5ojNVfUahh9U9GFI3PTGkNTYqC/pViokBgc6SoeBXrqetRqOwn/tP3z9BtQBkg/jCYXPzZEgl81mIHVMTnQrE2TH9QYsgPq4GjSDQbVjQ5mYgSoYMoqcUTn8AVElQuXLlMnuDxSXWjxhktyMEaaFT7/fADOy3697U+oY1AsGkOQruHexYMAf/rW/+PHf57e98m4ABBgyfL9X+k0m5VLSOxUInfd2olkm2pVJJ3dBrtfL9x/v5fKVI4/EegFor/ZzOnztHOIk8HCVmHGo2pzlKs9gWHnN4U4guwTSApWlzZMLublErVogB2ACmKcHZ//hzRiI5yGWnGa9+47b/b/38NPWJb/f1SGl5fDs83PdopbalWQWZZv+7X+hcWdbUvgWwzkLo1MRss6lcXpWEEGzTkyHzCPvnbDoIB8gjugnKfue733nttVdxcn/9H/5P4CZEARHlH4/y+UPAt0B8MCbpA9Bs9W3TxACnjBpbeBNIQ/kDJJ/MZ2FvIHV4H1oc0ASJO1CI6AeaLxRqHYLHeq89RCUizjwKZZaYBDC0UXrMisBk0YfGELSFIFhddkoiO51P7twlmLsMQiadgq/YHMXlCS+uPj2mCH9IoLHP2wmj2R3U8znqrcH62XSOtE04iJFNqkIKZYejPm0SZrbD47rNNUlGgrTw406RXWwDkRhyu6D6MXp7tKoxRzldnoPb3cPde9FgKp31JOM5Wsysnd0AceE17G06KASDsJpMm1Ai7XKgLS5rJpmMhAK0htktPRrYh/VHYKt68ZWxb+YI+uFi87DnR4GS2q2BWFwOn06cOSRf+ZmD57S7M+kFjPmO2qdzNME/zvaHb93TINmz25+6sIqXrcMcPqcp6ve7btiJsW2gQoUshW09D+lgDWE7tJoNiiNPP99KuiUEQxL7Dzgq007En/PBW8jPUAMXjQeQ5qQVMNPWVtdBvBwcHWJ0U7/NSSdAj6/zcGsbIDI/Utgm9ojEq4B5aET5zVG+/8MfVKqd7NLSxtn1p5+5evH8uZNmK7uw8Fu//a/PnTmDRcxdUYK+urrxq7/6PxDsadZreFIH+3sP796Fy5lTB+VBCM76CKQhUvbPOnHcBU1JJJ3ZmV+YMEwF5VFEyImDUrwJWwHbl6wI0ZOTQm9iaW6uuJWgA9pdWMyRIIVSc2hX7N5JaCk+dii0uKAnTzYZp3ecAd/6dOZz+OZJcWkOao6CjsE7IUpGZQzzwqFlTviK/mDf4Mdw8SNKhXgaXs4f/uEf/tZv/RYdAX7t134NlDMfAkXmf/gP/wE/Bmw0N4yuQnXxFl5DJN0chXAy8PJ2q7L36J4SSn/xcy8cLMYbtfYEf8Pv3mupjttb05OD8IP8g/WLpVToy5//yv6tm/lHtzNOn0vrBiaj7UcPbrz11p27t0Ze2AsHMIM6wLBMh2q3S07RHAXCgqkzdNy06Q0VKkHoAKDFxz33+yOL8cV5VMGZyYa8RHNo79uqqb08r6DdNeUXVLQ4KIemrppqXKw7WWtA23YkO843DncsGjJHYZbQCWxkZuaZZ55eW1u9dfPjg71d6m+//+1XxPTTB6uLSyQ2CIaAnWdOsF8q5Uq+UAAOkPnkE3RNdmExGo3Brsa60zm20+sSQAEr/KkCyC3HCIN1u5oXEgrdAkYOQEYkGFyIWJ+9PHjzE73W7IcSHoL1kLqBSMBu4r0i8UUBYmZN9E5/JTz7xRdWb99rfrjfEybwCca+bwa3GHCV+cWbCLkHnGECKcT3dQLH1GFg8EpbCvSoFVOIgA87AY1LCx4EjtfrW0OJ8FR2B9ka9gnaAlWDUGzSYdk21m2wZxbrfTUZOYX/0C6zq2vwfWyeO6vwiYnE+++9R+QNM07ttEOAeqdTkj1EzEZhCBFdOIgtFcNd2zspVujLoIGSnNJlY2UhBU0toQLIiXkxZ5OLnWY+CyIc7CkrQxCLOJjPhQHuwXZt1nreGEBHEsLseYdlOI57Ju2K5YXz3ac3wZ3FrfsLl22+5x9rL32+u/f1zr2D2U6FV41eXBGSeFCgiAJpeT6/9MmY/kOpJIS2pKonoaD/9Xc+jDiGL2XH6YtX7lRtuPU0bifPlIjFYY9GGQORadSaJF97YEs6PWQypVdSPYUQQyxzX1Sbur0LS38T+AGihAuOwTlPo2BDStN40JOD8Ww334BxkKfpQoiAIncEYb2FHBqMywTWTAqSHHYgqaSo3d4QyhLyR9QtXk6p1qw22t7H+8QnzGfBsAM8BXzDQ603dsKsQzob4LFlbGTSUZgyquUynNnoSISxTpcM+Kc71Oxq+eLhpYurNGFXHPh1vAvlSXZqTI0naF6kLslmGqSYo5wuj68WTmu2sCea0BOtR+VEMtcsWL2RRrMCULoW02JRxyicDJcP+/WODnV3MaImF6eal3Bid+deCS/INo7my/Wzl9zBrLOLZmiHx4e2il689NQqraLMwcyvbAvJjsyPKfKI6sVCqYeKhtttEiF65gIwR5qRLBcVs4BgpXG9lXYmlijZw3hYJl46vUsSg3oikor4aiAu0CRPRsE2wuixYvsTcSKFThUYE84xwb4GYwaIpdFokQLiFNFjFGu2AfAP70dj4VFtZPqd6C0iKnyC8BpjJEx6/NJu9TttijlKqVKl0wm7/J0fvfm97/7FFz//hf/lH//PwHrj2GCSq3STYaVRFbdw/bkXjo4PlrPJf/M7/6ZYKIUhZPf6wJWHQ3w4nC4BQj9CnkMmB6Ieti1QIaZofjmo5ZSfhXCCshygaPaZkYyFFJp3DTLdfPiwBL2gnaz6YQ2V3PO1h/W6Fot5iCtOyQbpOpoJ5dqAbI3eAbR2wKKdgd+TOCXK1xwFLCnmKhJTECzz5jFMFBNI1AvVwhnmvcwe36OMOTx//Md/TAjln/7Tfwo64I/+6I/QTz/7sz/7z//5P//93/99PhDtzgeyj4mqsb54SOYoKB4KIegsS8WuzQnPAhfHdxpMBDHmT+7vpD/Ztpb2Oi3tJBFvxS0Xk59pRUt77rt5o+G8+2PLyb2tw8eEC0IhXzpBPQAwLsBKgUap6BBul1PbvK126ambBzpH4Migk4SPmBcezJX187lMBOAngQWq0NEZtFYA/Ob3DWE7BzFMsA20GjkyPpQtio9BkA/73eGgUEe8DHKBoEvNZ2E22L8EyJkunpHf9zc287t7D27f7Wt9lLHH47XBATMhDItYR4VR4U9qT7YutE41CufKFSr45AEwgVlVFsQLE6IOkzu+uzkKIMQ7+4WEsrhCDxC/reOuFop1pzVBJo+Gm4lQqVPS4XzC6JoNI2RRMDfFfuOaNwvJ51s3b7diL0QUv/b155LHjW4JinavokuBItw2p+dFaNlmLnQEEWO1S+sXsrjk9Tz4NBgGLD3gY9J8iDPEjXgHDhJqQpAhOpusMd72fCNhixEe6lCKTkrGbT/UW8eWrn9QN58FMxz9vbqx7obSw2bfPHchlVnw+AJvvfVmiNRmIsEq5I+O0SWcai6QIzfv3q02e23aitktuDjLi7lMKgHSjrWgtgwiHrH2hSEA8XuqAIDXOqdQvYnp75vRPNXeb3oiK726QgQE/iDewNtc+TzvgSgIlwmKXi1fUjYufM0dG/Zefc9yrntuXbuw6h66qNZocEiaFeu0L5lcDoH5LGgONLIwbE4NdIRkPSmXHndVe9eXiO486l+/fp29AT/TnTu357yLXbY9BkciGj/odXE3HK4A0LEQnHp+n95qoRcpnGt3eqwcQX5zFLYXYXwpmRFKA8reYNzBcaEr43Dn8PBifiWXYikHgPVkR6OUwO5jBAxBATiwVwijCYI/gJgkweXD2KHZiDlXhJHpcWyOwmcSiaF9oLSYID2D02XRyGhBSsSSU3SFrIV+gbUOBIO07aL+NZHwNzqNZYqvg95IxEO9hcsOvQFlgNzwJEpMjpTVUCfNj2l1uvrmP2vZ1auXFxBUQ7XvGIZmvVkvP6jdHdIQxaWlDo7K9kuRzuB43El69Pa56GKlVey6Js0Swf9I51CtY4Z4O17/KOhODhozl5W+M9YuNZxR+GLvhkLJ04nDyjoVoPwjOXnyfy4aAbnsZPaa1VG7PqX6kroF6kCOjvPS/2pIh7S+xzmh/QzGizgo+gDqA2YH6UcURyh1/AGS5PxnjsLZwKzme2QBcVs39WA+PB5BRkGiIPU2gz71jvFw6PgkD3Mzhjy5Lb/fB3c6SCoolvMneWx20JOcMXZlNEZPXQOUAfHira2D01E41EzidAKs2e8Ibz+4/3/9q3/1v/2zf7a8suryKfoYRrhJbzAOx4JPXbnO9vzD3/9djLzVHAkwAiltRA/4etQYdphESsl5oPGBBUHPhF54wpxGIEygx5TEU+SLXBzpPsc0FvYzA/HFpVn7zKMbN5tqP5i2RXOXtFm/WIHs00hFfCCvqDkmQE+OGUWFuORwIhkcHg9xXHqp6ng0NHabX0QtUCosDVOHZzOH6gtbEJ4KUTJ2G39iSokpQ6n5b//tv8Vj+Af/4B9go7322muoIhTP9vb2b/7mbz777LNEzC5dusQy8YH4MYTXTCgB40By0pWpHu2flPSDQye9n+Hg99nGvuE2HcT3t58PeRbiF3fdo1do91gZw8vXM9TyTLcHHFO96hqUkiFPOJoCrwyLZ5CeZ5FIH/jfcDxUe0MlbD6LRo88+AIHtA8lR6VosxRGbIiA9tjbHGkhD14LmnoGL742gyQYsBnhUr4aVCTiI3PbeJAw3oOdZimQaUDVEBACY4RtmdaU84u9RPQe+92BLpqMPvjgxp/96X/WOh1sXpYKs92wTCl2S8XS/Z5eKpT5LFJ3PC2V50hj8mgkzKhRQ6Tim8ZTyUg4Crf+3v4+UWpyD+YovFjVpXvQQanh9dsvX90AjNpoaMNIFKaZTIImoRoE4pVqndAK0pOiCKbZfK+UA2uT77530gUN1yicWVv7jV+5/KO7tbsnvTlAzM1mO32l5A/ssMlBCwvXNWYIBhWJZZ6RF8wVCvsTcDmXxFpxzNAr6B05V0QY5pf5UbyXJ8V0QPNJUNo2U6X+Wi56LmDLL6+u0P6CmSSWQMuMl17+er3RpIEJuwhydBAB6WSSM8uPcDXhKxDHXgj7sC/h04wnyBAMcBMTcYjrR6BMkWuS0BKQnuhvuUaWtSXHy9edYR+gdbZ8XO1HPY7ac2fa9Lh2A8JgSe3unq7cuD/x2ZvpiLRkqdZniWeiU5tqLDtaFs36cEqn6rOXHAtJiJCnjbbjzgcuPFQElnmBX3/0+DH7maphp9sT4siIA2E5si88eFg+OSgnUlkshtXlZea0Wm8QkwQlT1klKEd0EqSuEnye+ThzHG5mktb18HiCQ7t556F0jZhfkuYXsja+4OuSy5t4SachEGbCk/3g4VbIc44YC3Udbqwpq5uD7mS5rIQiOqFoErTRzHpILAimDGZbOE/4MHbxHI8w/1aGYSXY5uR6Qcz6WDpb1NK2IzIdaW8qHhXwzIwA7JhOmohCbhULHgLQ0SS9kIlTfycsbjCZDGmd5fEn0mXaivvIBtGd0h302ugEMH+UJ3UzmLluDczXoNvr4L3BJtUbqIEs5JGGwzuNhzK0INNqrViYPJ6bilzFFYaR3zcL+wbh65eDxaMGcAM4NPSCy8gb6Qz00q6kP1Fs7uh9txatmIPxFYEl25L8B1475YIQsNsoImZPzHpNyiqJNRKTmw06NHRnNzqxc+m/QbdqbChOYFute3wKFDvz/S3c+K5AGGovLwn0gO/TUfiG48E4GOxUe6PtmSD6ibBmc3xLB0ukmD8EY0RSnPgtLxsKhwXVPF5qqYChEjrL5Rbx5KhWyqSi5y/HefvRzuTw4HQTxGJRBBEg8Reff5YDRWT5pFj8P/7F//53/u6vfuPnvwkG7PiodHxc0DX1rR+98dab33eMunFiU7Q5Az00GfoV1/JqBuAUjCSkhJgYaQgrJb/EPQlBnC6P2HWCdid+C2gnMp7oybDba9UNrUlCgmQAxTQkZezBVGQhl6a/906AEm22EtZfj/wNWShMaEKF8+YuhtaLx2EnSvbalF7K/jZnDIcDeh6kyO/+7u9iRWJfI0H4ChAAJUHGhSQ/C5fP5+/cucML+D34MZPlzMzWoIFeeeWVl1566U//9E+BDPAalDdLgIfE281R/F5/tdmp1js2XzAbC4CZCLq83WLh7fd/9OGDre7x8cGzz33t+ZeGIWfjID84Lr7v/xG5k5DiTkcTUx+pkaEPLN3ciYUcMBlMd2izOrR0ulWcLlf0dBSYw/ulosUTIRFHIB88H8gq69R9+6Az9vQzCe9yyjIIdsI0AaNmmkoI4uKY5i5c6TFM8ZJBBVvY67MTWBiMa3JUYEAxNqWb+pOegyyX+VAY8NRn4ZOQmcMDIpu9efbsytpqKBLF2yIgRsoU4oP7d++yxnRLCQdDiEaSbUR1EhaBV2ycOcPOe7C1def7bxBSAx/KVJsfLgENRRlQbu0iXB6+v0W6dbPVvXNYGhwVq5GE7fr59MzuDvlHuwd9uA8EFiZZaBGHMzeFVMH3Co3jj2tOqxHK2l84FzwTmdw6dPz5W6PdGpzyp6uP1sMEo7MI7guyDEsHo0Rs6PmFpcX9ENRhBnDesLU5vHJcHA64GEJh2Rgy3PyrxKsYHIeK30iWUY6h+SxM35Wnn8mtrDBxIgKEyHyazmR/6Vd+9dW/crz5g++j1diH8VgUHcS64w5euHCOaDMkf7yDQjSDPjXdDsBcQVixEvY58bCkRQHAn56Xa9dXIopTd1ti/g4l3Zl00+vsQi/jJLADyA62XGzbmQ589+MHyVuPF4snZQ1W/3apufcnQX3iKh8Y6a6jNQWb98Enrc++MEnFLYYzNXIHjdY2PdzNZ9ndedyolTxAhPQeKPRCcR+DETDox7esRJ/OLK+HI8NYJMpdUdCDrYVP1e402T3Xr19NJmkZQCAMm5gOsohx7ohUMZCBPmjbaqPzaTUzKX4BV6AkUMzSBJ0HlfJVv9RdgOZTa7Wm4gdQbECmn8hSBEGXY/rBAQnr07aRKBcBZcq3RdxizlOsj7U5D2+ypuYmMR9HhgCxRjLE70jmUr56LamMMwmFqqTdnSNACrgyaCISdmAPSNFg4eeyWAOkLOHHmtKGq0ubu0GJKqBub6K28D6t588mljKR48enRsbpVmtW20NtOoOiZOZQJ4VUOOG0+YZD+9BKHnxCJHTQwKI2vAFalzl65WMIIrFY6dFCVtMT966v0wQj2+hUMJBpAmH1TUEBT4y2XuvZlGi3oprPw87lKOKF4KVQATrDMhl0oCyTun3A4LRDGM90+GE4wxSFgQYeQZ8HbQNseyAgdcjgMJEi3ijFeaBQsPGJMqOBMBCAOpB7OB1lXrHB/maZASBLy3F8UoJS+E02+lPRrsDN8CAaEB6UefdxNXH8hpA/goqdkpwnBwPgmBACsANj2AZDsfUAH9Pe7+J6nD4LcZtque5z29dWVi5c2Hj3vTdyK5lisfR7v/Ovf/jqX16//mKlXNvfP8RovXf/wYsvPnf+mWehEjg6Kmrkil3DdCa4thGlkBY+BhZdjqYQjs11sATZTwUNDc+IWLGVPa4ZXAZY3elowEGLNa1OqSG2nsBSIf2xU0DTdI9cgBonDvr0jDJzWF0fYWa1UV6AS1IpnBCxB5RCtR0sxZQT04nv0xmjuJLvpSKBlljtNt8zgVyyRykciET4hhVng6KBRMSEQmYMjeAYiRykDG9E/RBex8vBKXzrLemEjT8kgcr51TZAoxh9tbG6shSKxYlXv3vzgwnYWUKNx4eE835w99a9/MG1a1dDcaW4V5kV97MJksQppKwP5LdoXDq/GjChKd4QEgOngW1DMwTCVkS4zEulB1qvjf8JLG1qUM0Ox60TmHdn4to9UacWACWKx9Ydjl3ET+K+touU+8RNWrzdG9YaTZJ54Gsp1iXsZJCcgvuawyl0RATO7JXWaYGe9CqaS3NiJpAnXb729PLaGuNS50EvWPQT1hQeBjhiZUH56a9/nWjPzs5jzJdGFw9biWUhm1OQyBjst+7f3t/bLxRLhNeISRD/Iq1pPgtEVKrGnql9+fxKqdJ648bjn/r6NVckfvOj3aAfEipDqCVnxrULmU73uFg38Mywzcz3goyCCbM7mFYGNo8t8dFDPTN1nIu7fvbZ+Hjo+L//Ot+1nBpMGNl4MgDxeVhCJqJpMHwlESOJGfk0BBwRQM4e+wVnALMW2izocicTzAiWnos/4CewaYjrYptUmjW2sgjJU3VsSSRS5y5ckF9I2ggXRHIO/DGZyf7C3/mVVCL1wbvvQmGHXMTArbQbOItJWIhTGfg3260m8K9MPLKQitUaXSoMA3gZMwph51QnoxEpBPOpF5YAodjzPUtBD96pp8P5XjLUigd7E8PfLMKRR4tipX6sFvc0ezYyWUmMBilDXR6p/b1GE2iiPWazVoLW5oQSlHZz9MabrLkzElN/6ZcCAU8030HgVBmoXMI10bBb4V0kZidFLVRv9sErwX4EkARVb9/d28cJo9S6X1OXl6QbRTweO3v+DFIIb44XzDUyEo9EsICS+A0LQYCcONm/+3fyNBAC8kp0NX4wcTGos+ahWjmPrAvV1sQwgVV32jRegPRYusvH/Y40atbp3tra7g0t2VgQiAhUOyQohaqZZZKVkpprbCMZA8EoKGQ8eqwHlNLYHQg4Os2tR3uPHk1Xl6m7AzWG1TA5OCxGAtYmvJbSeZ5HHHISAK1iDfBLvzdWrDRcIS9xuv5AzWZT3DdRSsoHzVFO1UzxpGD3Noi7hr02v93RYZViIZChDWqHKnWf3d8daOnlDC4zTcM5+rV2hdJfsgVEUgzKnRy9ZIrmLqVUNHJUPwau5g0TvXaEfFla4051lkcuzEY8QLFNeCApwZe0EnRq8OFDwzWmizAyF1eXaATbdkrdCVvNl4j4YGkj0uj1OwKKixBWNEK1ALENciu05tTIn7OlT+0Zak28XtaDxUAmAhiASU6+Z8EEpyFWGU+BrYZZrPh8yI/BiA4ZAmDHhuJ5yNWTOKFclHJLAHV4Q0f7dX2gEuByOvxPzCZLNpskl1erVb7z7W8PBl92Or3tFo3RRlcuX7p391611GDrHB4eY3U9/+y1TCp1ghyotw72j+guurqW3lhfiMeI4UPrw/MSWWa6xArkeKOJucwZY1zsZAKM1Xbb4Y24aW0Lq4PdDRcA3j7RELYG5HcE2bhVGtFS8sw7sUX5D2pt3QZC2NenAxW72EmUAzaJMbVXS6kwe7dZb5ijwI/5zjvvsOHRHOI/PYm2M29sTfY0VgCqhfnkxrBk0Rx8BcRMcIMX81e+8nY+jdcDB+BHvuLHoJPAi5ujECzmx5WVRfKmNEI2KLiZjA7zh/V2DYZHGo3hTkUD7jjsqgsUEJLvDSqERFG5QzrdWUAcwo466vcQ/uw97o0GZrFg2KCIXSASp8eGgiycF9u4h5i3j9uuSZf+uSNbGC3lsY/oqum0+ydT5+FJ2+GZulM6tLfdzmy3VD0sVevNpjEcowAW4slnnjqHaqfykcg2vgu/J1r7yc175rNY7E1cDbxvckISOCeymnSm0pH50sGcSAQSoctNIpxnmRWQx1ej6fADIFN7J/VOfWTx2NvdKq0vkO69HnqWCfV6vEztVCD6p5mGWrODKVur03ojGvK3LzwV++jOI/qDJVNRx6QbdFkpiYYhFDJrNLBsHyJyGGjzsaGAtbp1F0kKzdnpT17f2g2NN5zPhBzj1tWL2bW73XsF3XwWFDZnaY7bEpQGv0TysZF4KC6WEmkOiB2XTwBPIvlQE/xeIgSnO5YAuEhNKS2j/GtzeQVsZ4NafSbhCWouSAA9GsOa63ZaOEZCdEvGlZDXjL6I6a/81Df4vHdf/z590nbLxyeFfG5xgYplbE7wPoPhAB8c15Cni8EPZ8GEl/g2w2Gz88wruZz5LAaUgzCz8kAjqzqYVFTPTnWB2rU7r+5o7dnTPw8wU3n8o/yt7xSv/kzv7JfCogudAQd1bRlJ6KInBfc9s4HaXiTV0SccAiWC/r3bzsxqVow2y2sM5POGtamKRcWeQt0yIahbmbe5KsAuYSXUfi+ejDFdG5vL58+cBUVKMJDgIylnknSmFcdhEcUiaT45atJ4HKkhIAW5fAJAh8HISWwBscWDsbRztc8EEM3zsmoU+DLtKAnpljAa9Gc2tjvbEmSuxe6M+r1BqO49Idi+6HIBxSNLzjllUASEOcrcS3dIC3DKx1XkhAP+xxGE/VMbfU0xiLvqMJ5w9/s6aXNc7Ua9kVuJciy9bqtf4Qw6VFh6Aj6CCDbKcRsFii/pqUI7aojN3nv3DXOUUzWzspwD5yL+MqSAupbwh0fw7YwMxGA8uwTYzE0aZOw+eHSYCscHE2qEdQeoYT8qCQlJ3ylPv9vNLS4GQn57EAXpp81zIG0bevv0pbEZp36GzJGcPjmW0CVD5jcaQLVuzWQSJ8dA9QGnC1WyzCUrQFCQKfYD1LOS16VjKx3ewxEPfMe4OOgnit0po4WBET8f25XXm49E+4X5MLKFMA8ZUY4H1oMsppwQEZ1wzc7PCZ3RXFZn1BXCDo1GwhCgQWsBqk9JxglrUqoiWLUhkE2p3wFv9mnUBFOLirzjk0OoYf7oj/4Ej4mkW7lchwYIzeFXgkicpeUlwnHFUvmDj24FySfZrB21A2/rykr6qYtnIPRieeZ7ji0kimUupOQxxNabX9Rao/68CuR6eMBjt/gozjboVefY63R0Bn3OmI9u0IQRyCLApjCmr4EAvgWMRzaE9nNV4gxeDFL5PJIJANZcTjqBhv1BZsUc5e2330aLIOVxC2RpbFSzNYl68Ut+ZFMiCtExvIAfMYUIkX300Ucvv/wyvyGxz4Hnlzgu/J40z40bN/j9iy+++NWvfhWFBKbZHAXbh2knI0UJl0NxaR0rJA/9RAhidgrAE9EEi0VjY5IhGG9nlhaQRZIuBy5JcAmVEw2jyPD5QL1FYmFEKvFFjowX/HIsKjnh+UXWBRtXwjUgigj4kKuAqnLUhiuRHiejYblvJDQ2pG2S85OkceIQlRr1rYOjk3ob4SX2jdpv9wbLa7lVgON9MqLU8FOD5MGQA4JljqIaWy6Ls9NrUWkzb2hOkSDsM9AYsvdwo2UB0TEELYEmYECwyyPpyRlrJpam81iD3lOFQg3XE1qqeGJJCXr6Wo9YEMH7sTYgLfbuxw8ZSG1oTDtO5w9uHf7Cy2c3L6TuPKx9dPP4+qVcOuLLnxRb6rQ66XDAOW5SY0EAkKoZ7GuxW13EwOivNe4zUTS8cv7oo4Pl3MbhFgyX7eFkADu9+SxKMETpm9FvA6Ihz4XmA7bKGcVr4TOl5k5CXEyniEPuR+BnlHqyT6xW0AQsAmlFv4LUA4tJtSJtdbxfufL821sPCp0GqskcJRIOceJ4iwbzBTAAwEtseT6RKmWc9YDvwpUrr3znv3/04Q1QPclUAsHN2TFsEvFOpZMeL5ElInVA/wPcALfBVuQDwPRhydFa1hxFByvFgcedIO4gteiC8mtV+n00OqICpD+lqw0Vw18vNau3SW4TYhrRqotAIaIC4q9gNOAPER2hBRWGKJGQIUSntba99aAVij+RY3MLFmXBuWDno4k5MjwOd8UJ4j7R2dgKAOUDfm8iRfQ0KrV8iFcTAyLIQ+bTPGoSQjRvnq9iIzyJx65kMywAOkbUi4W2d3R6loEYhf/P6bwHqGuSCE5vhO1G4aTbMkRtcPxJZSESCGNYHB7D5jmpq/AqmlIVNcOdMLY5KJ+GuUDPZ469R2Ij41SanlDRTtcIuUf0N0V0uns0kh8tZUVCcioZk4WgHIKbwbbJHx/euLHP3uHwSvbCE2NCaW73X/7rrYePC+YonAq5JBE9w+mj0NDHvZOYAkBLpprCl2FTaLTSuTS+NZsPqFq7qWbjma7WpW5nPBtmoyEiMLHlIO4edmo8oow6I7XUb1o7oaQ/EKbbQcgchfVn+nG5ECiYaQTCCXsAZ3Q7J+lk2NA7gyG/J/GPypDJZ1qh7Sd1wuMAlgP+jQCh9p96VOhOlWCExCfJVt0AdS74FHMUHkn2h8gsQmVYWawRwobNyYdSBi2v4sWSdAdF7HGT9gRlSJYN/eSKkF4fjCNMKBANaX0y94jIj/Fh4l1+ugnox7W2nquUinA5EU9ENxP4RE026pDcWUbDA9YAAU0vQ0Qh7yWlCvAxrMABvHD50nqURp5s5Hkak50luhBzlAfHupn7NOazzI+6YJ2jgQRl/Z7aCUUzzamDwBYYKbif6AUAFLHehyrUSrCC4j3rOOjq94SBGIHHW/k0ACeICeoeJtyh2wdwCLBNoRQMRcxRgJnJoPPL9FpwRAigoZ+YBM7Hp4EvnBh+5L7BmKFFfuM3fgNEACcNS/Wb3/zmD3/4Qz4H+w5ZgL7hK0yafPhv//ZvMxAihrMGqRLnjxNIfqjfqUE4CFYLfWgb6agKyWFiC1CmbsXdRE47wc6QdUPdsUp01qEYDWIkHAg64g37OjYdUSraV1FXZj4LoglaOEw8Fpc9QYc9gbbK+gMmOWhAzzi+kMiEKHUCRw4ROLE+uMaaUneLFSj4OlwuQhn5UjnkSsnHEhpCLI1Hu4RAn9iA9+/uzFNoVBdi0Y/4yjxRfjfv4MDWI1MqO4WEItMlRIWGizhQqahCRUnbDuoQosEVyA6YZMzYlVWQ1jY0ViIRC4eoBA+9++v/ksfpqzTCQM1bjgz9vd3y80uR9agz+uLaOx8+1nPRsuq5dZLfWKNWekyBPqzAAimW3c4/nBQARORghWKIiWV2mr3h7b2Wy0n4bj8QoRLiVM1Q31YuUP7CMiIhxVVlEmRrzlN3clLnMS5MZzrWIAbNLcpCo0tBDBEB5zXzpUNJiiikOBaObWwfYQCXgLBcq8s5vmUbshyoMjwUavnE7BMYtoWdmS8XjoqF/nBw/uw58DikbsH3SKB7avV5iWI6sNfZoeCsqAVga3GzGHbGaAaH+re/+6o5yryDFJy0/A/GHAQFTzMjwGxTnIGJXbtTakdAYswuvLTmo1HCaBgMuCMxL7cFBYAgcfjXTluAKVxEAzhXxSaz+dLuMKF5ix9HwxyFLB6Jeigs2eT8hpthupgQvmfSWHFCfxfOn8OqQ9wTpZUw5NzmxXERJcFJYIszEUBI7BIGkL/O9Yd8xhMFsLaSJTUoLiMhhNEwZMMKDDCKOFAeT7OjEmLAyOQHnz/AR6odcmyDZCwsRKec9NmUqgnwRZUOVpUh8tNFnzSAauQukIZyt3LBNMcZo5kx/JWamsgu2t1eioAHnVooSgsSOiqjDqYRiKCYypmNxgBCuciuQLc7HUCBd7cPKkVszTA2AO6lqhbWnn/6B6+/83C7GQpGu90mg5yqmVqjhV2QjIkWJ0k9IljT6uIp06qOqtVwNIw1WalXObSKP+i2OYrVIqVELGY4FDwqFxbXVztGww2IpO9uaTosy1FF2drZh2ERQEtv1p0/EAYmtuYIAxObFaeC2BT/kZceDtrBgCUW8TRa0C/LtGLWISSwedC1HJ4wUHqxvdmNxJHplMm+puKQ5mRjt0LHHlQCoQ0MBLnA87BsfMNXOeviYvKz2ARMP1PM2AzBbyUsSumim9wmLW2s8z7ZYzpsY4xTGcB7YBsTw5RXzy8OsNRIzS+cklwu0zy3ee/WNkcU9x+3B25mURlWS6XW4g7MPYPhhQHh9HtQsTbn7MKljZX1LLNINpV9zb6RFBzbTPShnF1+w2WOQmyRCPlAp9rZ3us2RvVKMLDYxmD3eLR+x+i28Cin3gCFWIi2ltrjVnEIkct4YJSCukJJ7FG93w8E6RPmJDOCNiX0T08vnN6O1jNHkczYHJPKUzJVZvbF1DempmFjm8eAs82LObt885d/+ZfgmH/v934P+DIzRgO0V199lVfyAg4eLGf4MRTiQFRljoKniGOh9+BEhxD/qForcydAhojzCaiSNKTHyaEhmIp/CguD1x9EF82dTnu/R6dbAjvwp+hGty3iewzbOchwb6fXAVbrN8cQZWbjZsQVBp4scyvLD+fmgKB/z7Wz06hW9wOFUMhLczTLoN85ofNfuy/dRzlxUJTOL1Zi+/Fus5wPUefr8mSXVyvV2sPHezy1Oc5HP6aFMBC/tvQHo2zW57l4fnVxAeDvFKB8IBBCpPYHekvSewbtv3vdSaWk2ij/9yObGsOhFkt6ILscTjSofaNJhdodQlMBkmi+cX1wYo4Sj2WEdcJGoGn84c1q+7D3wtWoNzCBirvdgt7JeuHZzbV44OFhhWppMabFTWdjz6g7gfmMtLnAjaHMgNNV+mjZ3rlZDHikuKqHXnoCnAIzC9WilTajvJMNOC/7R9CzlJwX1p2PIG0jh3KerWGrzC3iefKGku9wiO4vMKA4SOF6XH21P6JuW21QB4SX8SQFYFnKZoiRE+Vxe/1EwgBusYiIApGvnEeLBYjj009fI5IMZrfbaUcQz/4AbyGDAxcgRLEcSWxPdB83RriZDCL4LhgbODBMuTljVIAO6afWpzINumpuGVluoe9GfHklarM/Vx4+Xo/0mWRcYQmOiVaS2npxjdgnErUmCYfFBX2g3BM/ze0XbDeOM7xA5ijYEARLUX7IKCQV72Xn8Bz8lQ8gIkX4HSQRHipBEm5RJo4XSPZDEPDYjqDO5oJCLFHeMtc9IgoQWvKy+YXOo0oJ2c5JRFLhQ4D65DV0kwuFAuCb0bkO6U5Fe4vhnDbPTgUQxi6nDDcfJ4VdIQFPRCqyRbBFghMTgcYNIQDnFz2QcE2IXVZODtv1w9LRQ18gzB8xjvuOFKF2TiUEjJQuNao9IFMoSlSw3UqofLa7X7/7oFhuOpfWniE0E/JPHzy8RZu1u/f37z8sSOLqiS97qmb08dQdCModiISH4BGuxzHiNh2P6tMwfjSklrMBfLrT/rSNMQqOhBYxBNhQ8oGZZ9TRO1UaqpNirrsCMSUVM2ajtdWlUUv3z/yCqplfzB+CVUTLeIhCBIUFI0HA5zIGLiYtHoPcBZwBTh/CgtbfUk4iSRTaquO/UlE2gUQSCeaGg53+imxrXqiEk8gjfGOSBqejzNfb/F4iaeifJ5cYEmJEyMrxOzYHG4NTNE9sS0YHAcopmp8CHf8XBBEROX4macFfZXFO5T8NAuywYsXjYTg2q7WOcBYSsKYLAPtC7DtZ2LneYGuxgaH6IZoxzaaouc2G4vQiIwqI5mOL8lJUKHMjAFnx4hjiiZoBYs+RNro9hQBFE0VuaZG9syLWfPjIBFiJeCjxNN/ACgeOAaoWeDyhBwGDFQpFBxYHaTDKvgSp1kM6gEMFIOOAt1rCZxy1+UWVJdudy9zu3BPAM+Jm8JLx4PyIsGJmmAG+4Ucu7oo/4QoAOSNcBkMz+f9/9I/+EQE0PoTvse8QHHg5TKM5CrkvTGxMJ9QSXXOYZD6Qe/DCYTiPOmClCDBwNKFiF0+LSDkxHKnNgC4IPB2TwgGBJGgM+s8BFhroV7lZYwptoTCUKuYorBI7h3ZfHD9Bm3KkxdRgnEkfr3PWpMOFrZ5QfOrJIW+CDIKezvIabtvcGDwdgq+H0aBrFTq3zCwnTeGDEOTok9Ccy6MuUVerRBBDsog2ZzAScM6c0x5pDSskQBo+gcPWRTwaBmjRVJC2V0t+oX+dlkqOUrEysbQV/yzicwVjvmCYIzCE26tt1MIO98hyqv45LiQH6QTcKXchcauHXKp/tJK2rCzHJyPv4/fvkWJN+r2lUneKwIEgVjIhYmcEQgrbAEOGCmgd7B11VfNESFe3UfBIX3AoSOhrYc4YZSb0zW6WS2w6xBngTUq/WEdOGqvMSaEiGJdLZINcVK3ygQT70UmwMobTw4Xp8YlnTD97X91QXZolBMiGCCtBK1HKpwcGNxTfg+CMiF1yqvoAMQQajaVErvLpi6nMT3/1699/7bt0l5cQFiQfPmobFDQcYD8NbmAaTdnsUHxyJ+YO5KgCCuEDQ0+q2SRYKiFrj0TvJc1OlIDYKal5GwVo9Mx0+D2Ylsg4LA8OnIh7cJjzQBRCh9uV0zc/fvMkFEoGt4pZERSfwILnF8UjYg2yTfhoutuNqE8UsC93JdlKh6PT6RJMppEyb+K8MvkicMjhi5DnhMtUzt0WgQ+I+Yuym59F1BrDmKNgLXEkeUZWBEnIEqJneCMblU9jZlgAXiC2Mp8lSl5qPDDy6CfCawjeYFPiZfHoFFrhvLK951tbzCm+MUdB4yB3kHTZ5TMIpVGvC3Eo0W9AhDRYx0eBH/Lx1tbbb/yQVmIba2vRRLZQJi8bLhTLt25XJ1bX+oXzlOwnwtb9x/ehD+92B7XqPjAEAgoiAefXqZoZayNaa5+UayglbMlaqw0eh2go8C3MTG6iXm/Q8RDrkY2xsJSEMQXtytHGxFjNZJFAbgObwAL6npJZIVMgaMHDuLxUe4R8p6OIvS7WFpKXDYxl08fbIekDoGyu9gadrhVsDDfGjBEOmhd8SJMSGPIA62IZwGPGpp9QMTTvTY0YoSe4bBVYnJAm80uOguwBFne+uiLDZU5l7hEl6Ly5zW7+UswaBhAfVt4lkTTmeiiRIiwufE8ma/4XWSEOm2y4+UUBGt0D4gkwdzEp+qQXDgaDbCPOCOEF0S48Ke/htIvGgQ/TZUkvJeLpCMgENqhwR4gNxd7lO9OZMZUTrz5dHio4nPRPhXpBJ/6hT51usyX1WLpJgvhASPtIp2Gdgeuk8gx6HrKCw7AyoJGPGHPA5scgw2Zu0mDkPHw8JLlCgJFQiitWr/ks3/jGN8xvPv0KWoxqGOJdJorMNGxZMzYxFiQCCD3EL3lkUjgcLb7//Oc/z7NfvXoVCfXp5/y/v+HFWG6oPfgPktME3gD0xfi3nDmwNviQzBAIfTYIs8H/KZLg/Ll87A0JSdHJXgQcjU+Ia0uV2JjI4GBKxj7IKR088cw4ltySV4LWbqjdCBpwckXA6F0KWqhTg/3L6iBG5mCjwTFHwlVSF2S8JXEgQ/AULAzmBSNSp8a+6hTL+Hu8jm1pPtFCju6yrnAsAA0u9wRansUgtuYUVwrcPGBANsAkEgzAxwYrKoFseJEpHAJOm0uEEhvYNLAoGyybPh6pvTLOFhFbtgoYeg6NOQqFLHwzmWDJw15lbc169/KjiupuxdxBuuR6AtVC4+3Wo2ZnBAsrHWJkZ2Nm220w/koHVoez16EkX2gZJ3YiHih1vFJOghvcHEjuJ8+yOBoUEM+gpIJglEMKtPAQT2AfsNwYFkR3Jfwshtnc3WGCOCkEEJxOwvhAaEKaJW33Dd3D6mFjJbOejaacwxmx2YnUZp4KTZQ2YUzRJ5j/Fjs2ihJCy4hoxwRgZ2D00YvkePPMh7c+IowxhGgKQvRkot4sx5wYLA5i79wMWWhMQZIi3AXzY0PauOnFefoshONFIvOorLqUEbHp2HIY51MW5Cb3ZYMSXgwW5koyTVAcOrwm1Rv+BV6NOMHz6K48LApBAOtIAYNMPfLYnLHPvnAF0BDxRfYaoTzuhD1sChC2EIFdNB9YbaBl2NNQjrIn2Fs8qtwUvgaupbjaprgnWIeTIRYs7+V6MmE4bZAxEm+nKtbDh6BQRKKIhTfhVM51nHDbg6pgorgD0UCSwUWrkUKmrhSnkfinaDkpA5irTVFWaDYRjafPwr07bRiRI8IEPn9i6opF4kO/W2MfZNNL2LPfe3ULmUgrwvXVZXQPNRUhfwZ+CvhZrlx1J1IROBWOD/IffPDR/a0HNCBgs/H5TDGWCbEoc8Z+8vUnM/CTGfjJDPxkBn4yAz+ZgZ/MwE9m4Ccz8JMZ+MkM/P9zBv4fnHj3bFLhfmsAAAAASUVORK5CYII=",
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABoAiIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDgfDHhrR9R0C2ubq0Ek779zea4zhyOgPoBW4ngbQXEjCyQCNdzbrhxke3zc9af4L0q2l8L6besxWSG2lfOcAkzuoz/AN84rqrKys9QhiRWl+2rM0bxH7h4yp9e4/OvKq063tbKWj13O+nKm6d3HY4NvDfhuSUxW1gJZAMkLPJgfjuqBfDmgtKIn04xSHgAzPz9PmrptO0+5TxH5ACxx+XKzkjsO35msTU4WklkNvITJC5MefQV0qi+Wyk797mDqq97L7jX+GngHw14g1vxLbappv2iKyNr5C+fImzerlvusM5wOtejf8Ka8A/9AH/ycn/+Lrgfhlqt1b+IfEskLWMLS/ZA63chXkI/3cfj+le0HW7W3s2uLmRRHFH5kkiAsgHfBrqpp8iuYSa5nY5KT4QfD6Fd0miBR73s/wD8XTLb4R/D66hEkegnafW8n/8Ai63rLW9A1947e3vRdSqDhQpz9elSA3umsUsrCBY2YFg8xJ+vtWvLoZ82p5h4s+G3hTTfG3hPTrPSjFa6h9s+0p9olbf5casvJYkYJPTFbWlfCfwVc26tNo5Zi5X/AI+ph3Po9N+KmpvY+LfBN9ahJJE+3ADORzHGp/nVPTvGepW7RxItudzMduehyeSacb20QnZvVnQL8Ivh+FO/RAGzxm8n55/36WH4T/Dq4urm3j0E74AA5+2T9SM4+/WXe+Kr6a0ZHhjR+ilCSVPc1m6Vbazd30l1BfXEbRkOWa4YeYcdOeD+NDg7XegcyvZDviZ8M/B3h/4e6tqmlaT5F7AIPKl+0yvjdKinhnIPBPbvQnwx8IPYeaNK+dRuP+kSnIx/v1mfEvxNezeE77TZZUeK4igfG3DLiRTj65BH4V3tx9ktbZbe7mVEkAADNj8z6UU1dO5bspLt1OOHw+8GBBv0aQPxkeZPx/4/Uw+HHgzB/wCJPKf+BXH/AMXXVJpbyBSDEynkEOTn6VKNMlDr0wO29vWnySN+aj5mCnwm8GeQWbRyW2k/8fMw7f79eLaV4dtL3RbS6dfndm8xt56AkdM+1fTMcXkWxjQttCnG5s14F4Itrae2skuM7WgkIPOAfMI/pWVZWWhyzlpoYM+j6dFqUEPksUKFmCsxJPbvWtbeHNI8mP7RZAO5IO6ZwR6cA10dtoj6fdXVxPEDOcpG2cgqMnOO2adY6FDEiyXU5uZTIJpCuT83bg9MVyuepFp20MJvBVnJZadNFZBfPWTzWaR+CCMYGaqaH4T0/UNT1i1uYGjFs0Ij+dsqGDE9++B1r0oOU0qAbFVoxIyoOdvPf8s15z4HvJV1y/tZ1k8+4Mcp3dtqscn/AL6GKTlJwbTN8NrUtI1h4H0VgcWJHPH75/8AGs2+8IadDBK8NiWZOcLI5I/WvRPJZGVGUh5OAvfNZ98ptrgqH3TZ+6FJBXuc/jXJGdVvRntuFG1mkedReHdPl2k25TIzhi3P61A+haeuu6fA8LLbzmXeoc5+VcjnPrXT6vcQLfJCFIYAlue+eBWBrTb9R0vacH97/wCgiulyk4vW2jMoQpqcdL6r8zQl0Tw1BlTYhznr57/0aqMmlaGQdlgAc/8APV/8aEQkhcEknArobbSbJIEkv9Rs7LccYmcs3/fKiuGFKq9pN/NnvV5YWmvfhFfJHKXOkWAgadbDYg4+V35P4msm8sIotOM4g8tzgj5iccj1ru9e0FINHh8QWV+L7SY5jCXhQrhiOSVPbPGa5LWnzYyDcG4Ugg5BGRXoJThypnhN0avtJRS0TsrfibL+HtGTLGzyAM4Er8/rT28OaIyHZbKHHbzX5/Wuq1TwzBBolzK0ryzom5VU45rKsLVZLYzNnj7rBsg1NerKCXKeNsc7J4btTnyrFuvXe3+NVJPDSqCWjVB/vH/Gu2VjGMNnb/Kq89nEULyNx3BopYnn06msYXOH8LWWn3es2MWow+Zbyvscb2XrkDkEe1eoj4feF/J+0NpmIN23cbiX5T7/ADU74deD9GvfCui6zc24NyDKWYscEiVwCR04ArtE8rZdQXJjaKRyUjPXFbN80rFxdlscBqfw70DybdtOtkaR3ClBNIwIPf73FdH/AMKl8LKg/wCJWX46i4l5/wDHqdpsLW+rJdJEUi3nbk9sYr0qaEx6PHLbjnaCTjnHeommluPnSd7HkHg/4Z+GdX8Y+K9OvNOLW+n/AGT7OnnyLs8yNmbkNk5IHWrviL4feAtF1JbR9LKlkDjbcTHvju1dH4LvYk+J/joyfu966efm7YgbNY/ibW5P+EmikEQdVidY2UCQDLZy2enSu3D01NpMxk92Zth4R+F5b/SrC4BPQSTyheuOoaujHwm8AXFr50OkFU6q/wBqmO4f991gPq4nunRrY7mORGq8L9K7bwlqNterLYuzLGvzKrkBV9sfWt8ThlCPNFmcZXep5T418B+HtH8QeHIbCy221/8AajKvnO27YilRktkYz2qFfBXh/vp//kaT/wCKrr/iZp39neKPBsYmaRWN8wBAAX92nSqIRm6An8KmhFcnvGFZtS0ZgjwV4c76f/5Hk/8AiqmtvAXh67ult4tNJkYZ/wBfJ0/76roLeyklDu4KRIMu5HCitS/024sJYW08M6iP55BySD1P8qKsoR0Cmpy1PNPGvhHQdH0W8m0+2Ilh2DzDK55LqDgE47mvRNb8E/DLSZLiBPD6TToVKKt7cEbT1JIk7c1y/wAQTbL4KuY7bD8Rs8uc7j5i8VpeDo2vtFe91E+bvyygcYXJ61jUT+ydFJq75zprD4ffCi/VWXSI4w0e/Ml/OvcjHMnXipovhv8ACebzNmmQYQA5OozDd16fvPaqDXOmabZG6TToJQxEUSSJjcxYAZJzgdTSW+v6fc2cV2thpSgyMhYB8DacZB29etRyyNG4i6f8Pvhld+ILiy/sZTEUQwH7ZPgsR8y58zk8j9a8X8M6Pol7YpJqALSkNhUchiQT79MV6gf+JTHBfQSo4WUNGVUgbhkgc/SuE8M6RbSeHLO8kBWRg5EucKuHZcH68VzznJJ9GdEacbq2qMvU/D+nu8MWnRqm4ktIzMce3JrNn8PCFGIO8qMnAIFehDwbcS2xkuZltm3ARKed/qatyeA57iACK7Vt6kFwDtXB9O9KFSTWpFSEVL3djy6TTbKNcNuRuOrZx9arR21p510fvxRlQucg4IPIx9O/rXcav4J1TTowzMlxCx6x579BiuTj0y5utRvraFSxTaXO3BXjpj9KuMnexMkraFW7t9P8nzLRmJJ+4yn5R9c80gsYvs63G0GMOEYFjycZr0HwP8PJ9b1A6VqE7WqOgmkjUAvtzx14Fdfd/AiOzucwar52m7w7RPHiQ+2Rx+PFa6mZ5hp/geTV7N7yExWtuoyXuJCqk9gpPU9qh0Xwv5Pjy20PXLNwCJDLDuKk/umZTkH1APWvZviJBa6B4Bsra1Mah7lUx0OxATgfjivN7rxJB4g+I2k6jFbvCI7NomWTJJKxOM571nXuqUrPWzLj8SudHceA/Ctszyf2WrJGCxVp5uQO33/61Sa2+HtvH5UnhFnmGCWN3cAc84xv7A4rQ09LiZ5JpbmUq0QAEj8FmYDI/DNWTGsu6UgndliQc0YGDhG9VuVzKvV5vhVjH0+0+Ht1qcUU/hVI7bOZHW7uCQPYeZW98Q/h94G034Z6jrugaaiTxiEwzpdTOBulRTwzkdCRyK5zVoreC80W5hYebPDL544GMMMfpSeK7kp8MTEr4WWZtyq33sSRHkV3zjFrmirGUZNOzO8v/hB4LhjMltpodXyVP2qXCj/vvmubufh14Yjz5OlCUjg7biXA/Nq1vFlzqcWozvsEkMoYwSR8FemB+lWNM1qXXNNhspXh+2kYDqdvm4X+92b+dcXNcmUZPZnIP4J8MgkLpuSvXE8nH/j1RJ4M8NFwDpuR/wBd5P8A4quzGh3FtaSxBJDdMNsikZxyCMeuRXP3CTWN+8E/yyJjI/DNHNrYwk6kVdnhlFFFaHee9+BLWG7+GFmufmeCeJj6MJpGH/oQNTQSahpwhuba1c/2hDt3GEsOnJU/UAdcjiuR8Ea1caVoNpGGLW0okLIRkAliNw/Kux8beJRf3Nrpul3QGnWsKeWIm27m2g5/pW7wzk43+8wWJSuUNQln0G8eW8kCyeWArMhIZTyy8d+MViadcPfXFxLIRBExJw2d2Pxqs3nSvmV5GI4yxJ/nVmBFZSRu2AfNJ2FaLAcya5tzN43lexS0Z9Ih+IWoT6pexxafEIiYT/y3OwYAPoO9em6b4t8JW8UkAvZbiOQ5aOSZdp/D0rwrW0D6lqd1audkbQEBhycp1/SsW8u2umDNEiN3KLjNYx5aa9m9baG+s/f2ufSlz4r0dYtlihtolXlbedEDn3xzWE/iHSTOGitpZXPUy3RYZ/CvOdJl0K50m187THa827H8mVhvI7kdq63SdPKEeXZx2qnooO9yPdj0/Cq9tS2SNJ4acEpSa18xPE16b/xH4XXyFEafa9kS8dUX1rodOihhHmzWkAY9Aoyw+pNc34+Eek33hScKTtNyxx1Pyx1l3PiuO92DynUKT1kPP1xWlOascs076HpF1qMFrErzSW9uP4e5NI1zFaeZPJeHa+CFY8dOwFecS+IZZoY4yBsThFC4x+J5rPvtXlMjI7528EA9/rUzfMOHu7Gl44vNIudDvzFEVu2dWWUk/Od65GPpk1719nt7izEU8aSIyAMrjIIxXyfqspe1O9uTjA/GvVW+IF+gKLdzjbxwidvwrJWTsbrVXHHxLdeGtfubWy3myMp8mOZDtZc/wmulj+IFusyxajp13bNjLMF3Ko9fUCuNm8c380imSeWQr03LGcf+O0snjvUDISdznGMttPHp0oUkuo36HqdtqNpqNr5trLvRkJBKlcjHuK8W8IrHF4Ysp5CWcpJsjHcB2zn2z/Ot228ZatcA7B5cK8O7thR+n6Vl+BNY0zTdB06LU7IPHP5kfn9TH+8P5DJrLESXLpqZytax0cd1Df8AleZmOXcCjLxyRwrn0P6EVrTWKLGWljXIHAPX8xikm0b7E8NxbKZbUAlAD0zzz/hTY76S6uJI7mNVVCpj+fO76+lcSlGWx0Yepdcr3MzV7mQIttDEzvIpj3oRu56fU8/zrkNKsPs3ibVoWO4wfZAWU99nJ5rp7/Udmsw28fzHJzgdM8AD3JrAs2ePxh4hWdNjh7cNEpzyEIx71V9GjSjrirHYX+uWmkatHDczxKbiImJpPuqwIzn0yD+lVrvxNBZ21xPbrbywxuQArfMehzj0rM1CK3vEMc0BlkUhRION4/unPp196wdV0ITW0QicxAAkheADWaUbno8srPS5At6+reJYZ3iiihkkxsXn8zVLxLbtYeLorVhgRlyuPQoDS2fh+/tHaZJQwPQHI/Gm+JpZ5tT0u4cbptrp5o437QO3tmttHojKF4yjKStqvzNTVLOXw4kD3iRMZofOyrcx/wCzkdD0ra+G+j6V4oa4m1m18+G2VTHEjsnzljySOvSuQvLuxn0yG0nuCjCcvJtQsQCBn9RXaaF418MaDpE9tDd3Jd02qWtSNuFwO/qa7YU4xVkedXr1Ks25PU6/XJtN1zRJPDfhS706HyW23NtgnEYPIX156mvKfGOg6Z4e8NJapOJdQeYMWzyU78dgOKzYNRTRp9P1SB3bB+cDowPUdaxtY1RtWur27ZcCQjbn+FcjAolaxMG1ofTk3hRLCwMmpX8Nn5nyIzfN82OAe1cFqWm6VBMZrNgDMCWAPCsAMe2DzSat4xvdR+a/usgHIQ84+i9BXNGaKVnkUOYZMghm+77ivPraqyKUZbpGxcRiSEE4XArA1C58tQAhdiOpPANX7G8tQhSWVmcD5dxzVC5khd5Yt2VJyCf4TXHSi4zuVQh72p6J8OIXf4Y6HtICP56tn/rtJXVraxR2ccUsjIUURrJtGD2Gf5Vyfw4uUi+FmkKxHBlYj0/fvXWarNPutSnlm3zvm3DkjHGPfNehF2kwjquUx5LeWwuCW2C1Db0YY4HRh+J5q3YeJtQtrV4bgrNbkjYzDDBf7vvWNq+qxzmKADgvnHrjmqzXplIgKDDZO70pP3jXlWzGWt0t74w+IV3aOyqYbMqBgHiBs/kRXLalr0Ur20DEiBYclwdrvIc5DH2rS8ML/wAVJ4xtfMCRypbIzr2zGw4/OsXXdOgisRbGTfOhJ81h8zAAYzXo0YuMVJGEn0Fjg0+9Bb7deWe0cRkhmbJ7Fuwq7bW+nWtw89vq186AHbEdmXOOmRznvXLaLfXS6payXVy4ii/dknDMIz94DIxn610vi7UbeGz09dKlnWN595DlchgAAflHB5Nb+0vqRY6DxdfjU7z4eXEu9Ri/RsnLYVEH54rW07ULK2u5HSOSFC21dx35X19jXHX8jN/wgiMxbadQbcepyq81sis/Zp3TMKk3GWh3WqS29xoc0gAMbREq2MGuOn1vX7azsVtbDdbPtUzuRgLn/Cte8vdnh61t1YbmXBAPQd6yrm+kubW3gICpAu0Y7n1rFUeZ3LlVscr45fd4Tv8AOMkoeAAP9YvYV1ltcWOhada2NxcxQubdVG9wuSB1/lXHeNj/AMUrej/rn/6MWuj8YaULuWJkspJ0i4OG+bHPTPviitaMkugUE5K5Pey289haIL+MoLqNmfeDkZzjjrWLqegWmm2MNs+sRR2wkdkDo7lsnr8o968+TRdQgnT7XZzxRg8kjA/PpWhcXeo3dlPHHOZxDJ8kks43quOQFPXt+VRHRJROiSu25dTqbdY72yj0621HzmBykXkPHzzzuY+5rF0i5SXwNp9iBnIkZz7+Y2BV/wAAWU2qXT3jyLBbRr5bbiWd2x1X07ZrK8MQBvD9s7E4+bhep+c1z1k3sF5JWR6Rpb23iHw3FO7mK7sx5T7j90+v4+taumavYWVnDbPcQB1XB+cckmuY0SaCw0jVZfKfY/l5U87zyMCubudNWK3lndUjjALEnqBWaWt+pd3y2Z6h4guVSzWyQfv5xuRh2x3rx1rybT/iTezTnMYkiadcY3/KMD8zmmS+Mdal8lTesyQf6vcoyPqcc1zuo6vJd69dXz/JK4j4HIyEA/pXR7KUXd7EOpGUbLc9hOuyeH/iZp06ndaXlsqTMBkKCxwSe3JFXrT45ad/ZF5b39rPFdxK8a4XcC3IH615DperT6jdXazXKrMbQrD5j4VijBwuTxzg0zV9Okku3uFtmjjvcTxFvlAJPzLz6HP6UyUmdp8SPEKeKvC2j3unTxNFbo5uo+Q4lO3dgHgjkdPWvPtDdp9ZsEjDGQeaGPLfLsOeBzwM10WjrBZ+EtXhucB5YWKguMM2QMjHsc/hWR4bvLrRvEul3VlNazSxGUoMZAyhBDYwehOKLrcdmdvDrUejR+WtwFjGEVmiyZHweSG5UZI/KormS5mMlxBcCFVCpLF5oBL4G4hfTNOv/HsTahHNqGlyybB8/wBnmCq4yTgqwIP+FT3Hj7wXf6TPFHob21+yny3WBeGz1yDW9OulPma3MZ0m42RQ1K7sbZtNmu45dqwOD5UWTnPXr7jjrxWRr89jL4auZbaO5Al2BTIAB98dsn0rVmtpNQ0KyNkxEolZjLIvbpyKp69pps/A0sc0iNJFtI2DrmQdfwOKzniPecU9yo0tEz2vS7q31fS0n8oAxnEqcZiYdGHtXJT+HLHSbqZoXkt5jKXAYHy36dB2Nc7Fql3ZyNJBO0b9iprotK8Xi+gfT9d+eN/uzEdPx7H3rmnpseXTxfMrbP8ABnUzJq/2GxurbVfKt54gBJs3MW54JHbivNNVeW21doJM8n/WE53nuc+vNdBqOp67pemXGnW4nuNP4kguIot5Ue3auP1BV0/Q0lvRdx3Uknmq10Nu7P8AdHU8YzU05Rlp1O6dSdely326f1ueV0UUV1HQdbo8GoS6TbmHU/Ji+bbH9nVtvzHPJ68811Fj4H1W9jSSfxAIXlA8mP7GpZ8+2QB+JqTwgkFh4P06+kiWSWYyLGGAIXEjZJrrNB1Nf7XmvNQSaeGzVXWOGIuckZGcdsmsZYmpflizojhafLzyRy+seCde8O7o38SxlXj3pvtlG/25Jwc8Vw1xr2v2UT2c16yKx+dBCnP0OOa9x+IX23VNBt7uCwZoS/zbhyit3NeIay4ksMupLBhgnqD0I/St41ailZvQhUKThe2pp2WgTX+r6jb2msF4wlvKZns1Bk3x7hldx24yR15qaXwZcxy7f7VjJ97NeD+dS/DO8uIpNUaPysnyQ0koztUBxgD/AD0rudTmS50+SVGikuUIUsygcEYB496c501vuYRoVnqtInDrpGoaY/lw67Gj7d2FsY/55q/DB4nAMsGvswxnK2EZrU0eztYNWtYr6dbyyuZFEjrwUf6+ldw/h37JFqMkbiKBEJjVD0PPX8KiPK1cKkZxbiebXnh3xD4l8R+G9L1jXiRdG5FvM1kgMOyMO3yqRuzhRyeK6uL4BXhxjxiB/wBwwf8AxyljgSz8feB5jJuDm/JkJ4P7kc/rXsUF3EqBjIuMZBz1rZR924l5nj5/Z5vJSN3jNuOf+Qb/APbadJ+zzdsSzeM8seT/AMSwf/HK9kh1ATWzzRgEK+0c9RxzVqRuOtRqVZHzP45+DU3hbwtea5J4i+2/ZfLHk/YvL3bnVOu84+9np2ridupscm/ILHoYVr6D+Md2kvwz1+BQ2Y/s+4kcEmaM8HvXhdhay6jOIULA/wATDsPWpqWjqzSmrlJv7VhO0X7YyORAuMn0qwsGqTx/8hQl/wC4bcZrsIvCl1NawLYxbk3/ADySAgYPp3yfWu10D4ZQ+T519I5lzuMUJxux0GTzXG8RHZbmvIrHlcek61dLDDLq5TA+WMWqkKfwrE0K2v76CGBLuaGIqyL/AKOroF3ZPJI717J4p0zTtFt7y4SeS2uYNrRxBgdgPQE92riPA3lQ6FaS3MEbq/mqhZu2TmqjU5k32MasVFKyOms9H1rR9PtoE8e3MAdBthfR4mGD6F35HvVmf4e+K9Rv7a2vfFDQtMGWJ5NKgQttG4jCvk/jXZRXHg5bPSJdbktVvvs8ezzWOQB0z6Vm+M/iZpFrPD/Yyx3+owkiK4Ubki3dQPUkVsow3sZqPUxda+Hvirw54fu9VPjKF0sYTII10mIEgds5rkPhx4b1jx5quv3sfiT7BcQmAyy/YEl87cHA4yAuNnbrmu01vxhcXHga8sNQuHW7uIis8MijMZZiFGevVT9BUH7PsXkah4ti/umzH6S03Fdik3F3W5oD4Na8vTx63r/yCk/+OVGfgprRYsfHOSf+oSn/AMcr2PNc74n8caB4RgLapfKs5H7u2j+aVz6BR/WlyrsX7ap/MzgP+FM64F2/8J1x6f2Qn/xdcD8RPAmpeGNR0GKfxCL97z7R5bfYlhEOwITwGO7O78MV7r4O8TXfic3txPFb2sUTKi2asXmiJGf3rfdBIx8o6d689+PR/wCJt4R6/wDL50/3YquEY8y0JnVnZ3Z5mNGv5IPLl1mJEx0FonP41Xn0G7VRjU0kU9xaL/jWjHJwMYq6ip5eGYBjg49q9P2cOqPN9rK5yb+HpmA3Xo46fuAP61U1HSJbGykdrneuAdvlAZyR3zXZy8Lh/lCpx7nNY3iOQPosp7naB9AVrKdKKT0NoTm2rjTo96HwdXYsTj/j3B/rU6aPqYhdf7XKqOg+yrycZ9ake+jS4Ecgk3uQCyjIXPGc10ehax4cMz/2otwWcnYwBMYwO4HNcDUFG8kd8FVm7Qd/I5i28PapdKgj1N2kbOEW1DHP4Gtyz+GHiO72mXVEtlI582Abh/wEEmu11nxVZ6Fa2SaSUiuAN00ItcRyAjv0PXkc1W0HxLH4k1e0025hmPnnZiK+khUYHJI2gk/8C5qOaElaKRTp117zvY47wbp2v3fhi2+w+JGtIGR9tuLJJNo8xgfmJzycn8a6dtC8W3cdtZSeNGMUxKY/s2MbQBnqDk1D8NYR/wAIfZy7sEpIv/kVq7ZI4Yby0DTf6aZQI4xwNhXkn3rGVRRbJhFyehxb/D7X4rxYB4vLHZncdOQ49vvU7/hCfEhV2Pi/Hl44/s2PnnH96vTprYLqKSt0CgHNVGO5ZwVwDtI/76olOxN2eJ6Fp3iK48V65Dba6IpYniW5uDZxt5nysF+U8DABHFbd14C1m/mM9z4pDuRgkaeg4+gYVN4QI/4TDxeVO4+dBj8nrsbu9jsbMzON3IUAdyamVeqnyxehxTnUdTkgeff8K81KNgy+I1wOcnT0/wDiqyP7Bv7rV5NLk15S0ThUP2FME4ye/GK9cVFlVZP4XGRt5ry7WS9p4ovpF+VluNw/ECtqFSdRuLYQqTd03qQ6/Ya5aaz4et59fEzDz1tnWxjTyBtXdwPvZGOvTFJcHX4bs28fiMynbuBFjH6ZxWv42KpqPhG4U4llE8hU8bQUjxn9ayNWupYL7EJBbHzEe/UVanUVlJ6m0I80OaW5bis/EM2jrep4lbfvKtF9gj+XGO+f6UyK18QypHu8RurO20AWEZ/rSadfzNayQMSoHO33qE6nOziIDGw5Dd6rnl3L5F2M7xZa61ZaU63ur/aYZACYxbImcP6jkcjNezr8OvFsyA/8LDBH/YFh/wDiq8X8WSSS6OHaQt8oDD0+avY49bvvDt6XtpTLaTsWQSsSp55X2IqHUurz1Cd4fBoEvwq8TToUl8eo6HghtEiIP/j1Zp+CN+JQp8ZWgkPIH9hwgn8N9d3J42tpNMFxGgVzw6u33G9Peua1rxtDrFoqWdjJ/aKH91KjYKn29RVSlCKuluQp1X1OdsPBmrJ9pTTfHUf+jyGNwuiRKM/99VwnhLStUvfD8UttrrWsKK7eUtikhUBj3JGc8mvT9EkvdCsvs99auTdP5nnr82Cezelcv8L44pvDtnHLgqzlSoHJzIR/WufmlbQ2jJvdlnSvB2rajayyr44MMUR4D6XHy2CePn9qyJfCmp6hCYbrxcixO2FD2SJv79dw4/Gu28bR6BoNtHDZSXiziYs8QYsiDBGSPc9qx/Bl5Z3Xia1vJAZLUEwiWSPCE4ORg555FdFOMr6oHJ2tczD8HpY9IutRTxYjtaxtL5QsFO7aCevmdOPSuB0jwpLr2q6hCdRWJ4AjFzEPn3AnAGRg8dK+ivEkVjMt3PA8Qkjtm2suFIHO5R9RxXhWh3tjZ6nrT3RV4y8IAz94YbIB9ff2qcROUY6XJjy31EXwfc2s/wBjGr7ZdnmbTZqePqWqyfDOqywrb/24zwJmRQbUEBj1xzx0/Srivcwai9vcyNKkiE29xt5aPrz6nHH4VLY6nNAyLKgmgLY3j+Jf8a8upWrxej/I7Z4Wo481J/IyG8GXk9v5ray2EBU5tQuM8HndWTd+H5/D2r6c1lqIklnMgSQ24GzAGTtJIPDGvSbW9t5YZXjlVl3bXJ6r7Edq53xC/leK9G8tsFTcEZ+YY2Dn1xSo4is58sn37djjXOqqjUTRiTRatdNJHNqsLBT/ABWkYz+lPttAuiS39s28ZHIP2RCPzqTxFMtxeQmLEREWHiIxtbPf2PFVtO1WfTbhWK70Zsvbk5DduPeuyPO1e52yVNStY1/7O12IAw+Io2HRcWsfWsHxPPqdvaPa3OsrdpJgSRrAi85BAJHPbNdHearb3ls0lkqxuRjy0XBz9K4zVbJoLOZ7lJFuCQcN6ZHainJuWv5E1IxS0O0/4RjVicnxEf8AwCT/AOKoPhbVOCPEZOev+gr/APFV3ltpcCyxrezkM+flU424GeTVi2Xw5LeCOO7V3BwF83qaXNUe5yrCQ/lRwcGieIbTAg8VzxqDkBbRQM/Tdiqeq+E9T1q6W61LxHJczKu1S9qPlHoAGwK9YKWZkbECfK2B35qvc2GltGSJFikPVSe9O81sy/YJaJHy/RRRXcZns3hvTDc/DXSpY2JZUlkK47ec65/lXongWwe204XU4VVnyDleoXoTUfwMjjHw6t5ZgrkiRACM/IJXP8ya6nW9esNKt23PDGqjgAgAVn7NKXMjZ1ZOnyNGb448SxaNpUXkwi48z5do7/h6V89+IPC2r3etpbabYz3STIZ4xGueCcnJ6cE4r0uPV7fxLq0iQrbCCIhpZXOOCeijqTXc6bc2FzqPlWBUrDFg+x/yKtPXUlvljofO3hYXOkzarb3ETwXCNEjRuuGDfNxiurtLnfBLDEULu3lsXHU9f6VD4jtbi++K2u2tmm+4le3WNR/eMI5/DmvQ4vhfpUeipbC4nS9JDyXO7dubHTaeMVlKC9pzGqqv2fL3PPYoI0voJhIOSHQg4yR6jsa7Sy+1XcUnk3TSSSZby95yw9QPSsrUPA+t20yrBB9pfGUMeMce5xj6Hmqqay+hZl2P9rjcb42OGU+lClNbITVOS5W9O5k+JYru11rw9HeebbKGusFvlHKrnBParNlrd9pOnytFqck62bALE86hdpGeB1Pf8q1fi9fLaar4UvJYVlTbdbopBwdyRjB/OuI8WaRp+nTWzWd6kJujuMTJu8vjrkdvautP3bnLtKx6Qni2aytC1tduodsMpIYE4A4/Gnt8ULk2U0stxLAYwQoEatuIIBHt1FeOtLeKgifU7bah7E/4c9KibU5gTGbpWQnLeUh55z3rNyfQ0Sj1O08U+Jb/AFrwrrkEk8nlq0csqYG0nzIwoB/X8KXwLZmWd2kEKxKwyGbBfPb6CudOph/BuuWoQgyeU5d8biRKtdJocC+cbiFXEyj94xwAOM+nes8Q/cKotNux6dNfSQRpCtpsiTkc9u2MdvzqP/hLI30W9ufPDWdqAsjRYUFv7vueKwItSuBcCKRWgi3BlZXLAjt9O3NV0tpodDv7STaY76c3CMseTGe42n2Ga8dxd7t22OuyOT1HVb7xrqS26p5UQY+XEoP5kjr6e1P8JWYn8I2DuXYL5pVQeh3sOPyrv/BXh+0tBLBGmblnw7t8pKjnaCOh71yPgbb/AMIVYnaCR5mT/wBtGrrlJcto7HLX2Rzc/matrEyy30FoIyFjN25RRtGAvfBqXRXh8P8AiG1GrGCeCOdZ2NtIJVI64BHXtxW9pNk0cd4JLbcZ5mcl17dqpzeHbeS8dBbMiMnVOBnP861VWKdn0Mue2hm+Kddt/E3iGW5sbUwRsD+6HJkfJJJx616B8AN/9peLvMQo+bPKntxLWD4b8H/YJbq/nwQSEhx1x3JrtPhOnl+MvG6jsbD/ANFyV1XuroV7k3xcuPiBFbxnwxEyacilppbRsznjoR1A+leAeGdBvvGvjGDSpr3y7q4YmSa5YlhgZPXktx0r7QrCvPBnh6+1u21mbS4f7Rt3EiTplGLD1x1/GlcCTwt4ZsPCOhRaVp4YxqS7yOctI56sfevL/jz/AMhfwhjr/pn/AKDFXtPWvFfjycat4RPvef8AoMVVD4kTLVM8+RePu1BcXnkyNDyq7evfHtT4CWOQ2O9M1C0muIsouXQ5FejO/LocVNJVNSyqSMRJkuAON/PFZXiDYujXCg8sVP8A48K6ArdQaXEZVCIxxn1Nc34gcNpU+CMfLj/voUpv3NdzSK9/Rl/7EHuhKdrlfmK+YMcDuPxqEeXHP8xjUsCEXIAznPHqTWvqOj2ugXdtf6wXMDyYm+znDYOfuqe/v06VlavPoWp3kk2m/are1toN8X2pgWZ8kk8fhxXizpyk99D6bDYulSheMVzdNO3W9/wN57f7To7TSSAusG4M7fMQD0+gxWXoZv4tctZNJEUt/DKrRIwJXeT8u70Ga3ofGFi7yNpGmX09w1uIleC1ykbdc7TkHn2pPCmn6rL4gW/urLUbdGk3XhLeSZQCCn1Ax0qXR1uaU8yUacoLZt/j2Nv4ZadPceBtNmQqFAl6n/ps1VvFb6smrW0tlEUliJTzVbI2g5yRWV4EFy/hO22K+1Y32hXI3fvTXWRSzFY7ZgECxuWLnJwc8Z+tc0qkVOXU8WjJSnypnK3HjbWdQcwfaZHmfIYx8AV6Dbasi6Urs43xwRDkZya5DRfDVra3bTvKGm+Y4X7qntWi+iTWssqrL5gk67RwB2pV8RGXwmU5KMOZPcxfBX7zxX4oYMJNzW7fKOCSrmtXx1dfYvDiyR4Dideg9jWN4ZU6b4s8SxA7mH2XAPBOUJ/rUvj+d30CGOQqAZwPyB4rSHvVI/L8jjTftU15Gx4a8QQ3HhuFriVUlgAR8jr6EVxutXMOo+I5Hjl3LPMgCFSN3AH5dfzrnF1J4JYbSKXygzBXkY8AHvWolnfvr9u/2GYweaMSR8jb0yG6Gu+FKNOblFnVGlCN5O5J4ou59RuNHnlAVzc3ahV6KAkQAH0qG51BreaKGQB1cqpRlyR75rqNVsrWDxP4UtVhVoS96xD87iY15PvUmt6DpsksfybZy42kHjPajFVVKonbdL8jTDRvC62ObW9Z7hJI1Q5+QYB/WnXYuIlkdY2LP1fGFP0NaHxB0T/hDdYge0iItbm2VgSScSd/6Vv/AAktU8TaRd6dqcbTW4l8xTnBHXOKwaaN9GjzrWgD4ambcSxZeM9PmFd1rniNEmOnMF8oSmQnq2Sc8frWn8XfDPh7w74KuPs0bpeTNGIVzkcOuf0zXO6olndNh5Ck4PDKOeeooltZmUo8xW+1pcBnMr43YVf8a7DwPf6fDBLE6BL8H5S/Vl9veuYvhFK1lplpABK7CR2HBC/WnXmnT6fLkkvCGyky9V+vpUuNtUZW5T0S9vDtOa8f8PQyp4VsZ4tUhgTLtLGZdpA8wgZrqrTxEZCLS7kBkI+ST+97H3qt4P8Ah1H4g+Hmn6mrEzP5uEDYyBI6n+VaQa3LSvexm3XjU6ak0H2K0uotxUzAFw+R1zu5rJ8LyP8AarZkWTaJMFsHCknipdW8GXumySw/Y5HiH3FJ5X61Z8MzxabK63EKyBfLUrIwVQQc4yeO1dsKlncVtLHUvq+r3euHTVVvmmEWwoARkEEE/wD164n+xUtvEWvaYV8wRNFtdUzxtJ6c9civQZPF1zLc6hbafo/2qeJBMDEBKHBx1YdwTn+lcp4d1aZvFPiWOYeXJfeW5QqRjAJxg84ANcuLnem2nqSoMtaNp5gmazkLZjTdEsnUZ6/TIPX2qa+0K5tbkm3t2Xd82Fww/GqmoXyw3jTvJvZF2w88gngismy+0wx3IfUJmjY/PErZxk8n8q8yF5RbkelRlOKino2OhNyl9LNblROvDgH5CPc9BUeo6kZPEmkThYd6icMVYlTlMHr7VQvtTDk28K+VAvSMd/c+pqvb2MlzrGlNNIoFwZQFDfd2r/PmtYU1zcz/AK0N8VKPKove5o6olzqCQXbpEEUGKRV67QeCT3rOl+zwvtkBYA44rr3CWNnd2LAys0f7rIztJIHJrl7qCKWZ1aRdycMMcitqbfU4ZpaEMN69ldrPEQ5jOcEY3r7+4qTxLrLa5ZSTyRqjxIqFupc7hj9KpXESxljFvIXGDjqannt3/wCEYvrhYisRCgsSMZ8xeB39a0aV0yFezR6Le3l3rE8sVvGGZEbb6E1xen2l82qwQizkMwk5Ugj659K7XTtRW2lV4tu88FTxmtYahIJGmEKBj1b2pRnyo6bKdmgtdVVZhauCrq2CM55rRnUSXfmD5W27WPrWVH9luLs3IC+aOSRVq4uUtgHd12v15rI00PnGiiiu88w9Z8D+Ndb0PwvaWlroRvIQ0gjlF6keVLEldpUnqTyar+ItX1jWbeaCHw21tPK3Msl8su0dwoIGPrUfhZQfC1hnHLS5z2G+ujW1a4IEZPzE42jJ/wA9Kytrc0U5WseX/wDCLeIESO4+xlVkYhG89ASR1/irb0BfGfhvUHu7GAGR1KuJZ42yPxbrXYSWhLJlgWB+6SfXnNWXRpAC+I2+6wX2yM9KvnZCb6nLeD9d1fw94j1m/utBOp6iRGZXa8SMwbgT1wQcjHTpjFdu/wAWNYiYB/Boyy7gBqqHj8ErK8O2STwfELbta5iismiLHnG192PwrBt2W5GoSlx5S7YUOefSs5ya1KjY7BPjFqjRu6+Dsqn3samvH/jlZ8Xic+IdaFxH8Oorm+OG51ZBuPUHBUA1zfh21EwlVpghkLINxwOB71e8DvLb+L7ZkYMIC4YjnCjgH9aXM9fIGkM+JFx4j8TanolldeGm026Hn+RGb2OXzeELcgALgL365rBuvB3i2/u/ObSDu44N3Ef/AGavUviE/meNvCBXGQb0HH/XNKmmvbbToPPu7jywOgAyW9gK7sNBTp8zMJvU8sh+Hni5mB/4R8uP+v2Ef+zVrL4D8Xop2eEQCR1bULc/1rds/GN7qviS1s7ctb2u5sjgs2ATz6dK7zUddsbCaKOS7jUPxh3wc1ryRva5FrrU8P17wz4m0jQ7641DQ1tbVgoklF3E+3Lrj5VJJ5wPxq83i+7htmhTQjHuyMrer357L7V1/wAStWs5/BF/DHcxM8nlbV8wEtiRTx+VebGO5do3ktHh4CtG4OeehGa5sRSg2k9Tai3FPlLp8c3TwCB9Nd2IClvtQ5Gef4a07bxtfuLSJ/D4l8ol1H21V3HPH8PpxUF74f8AsGnSXHkcxxhnUjkdOT9c1zX267WYFICY94G4L+XNYexpvdGvtJdD0ex8f6tbeXLL4TSS5TdtnXUEQ4PT+E/SsTwlea9H4Xs4rLw99rtxvKTfbo493ztn5TyMHI/CsK6vZGcFZCG7ivQ/h6gk8C6YrOF/1uAeP+Wr/nWMoQirWG052uVheeKyqgeEBk8AnUYuajkuPFS48zwlg9v+JlFXci+itv8ARXu1WT26D61jeJdZTT7jTd0a3UjOXxHJgsoGMfqaxSjfYHRSMOPXfFVsuw+FMqP4W1CMj+VW/h/rviqHxR4qn0zwaL+eb7J9pgGpxQ/Z9qOF+Zh8+4ZPHTFblhb3Laast5hp52LbUYEIp6DPsKu/CxWg8beO0HUfYMf9+5MV0UpXfKQ4pI1j4r+ICnB+GmD/ANh63/wpv/CXePsH/i2nTr/xPYP/AImq1t8QtQuNRgtWsj/pDskflR787Tg554xXU6P4gOozGGfTbiAlmTzSQUyuc55yOnSt7EnODxp47P8AzTcf+D2D/wCJrzj4m6l4o8Rat4ZW98J/2dKPtX2VBqUU/wBo+VC3IAC7QAeeueOle5skKTO7MD1wD0rzzxLeWmv/ABO8EaaUlgSAX24kYBU26spU+nFPbVDSV9djzSz0XxKZo4k8MPIxOAv9oRDNW20nxbBJs/4RNonJP+sv4uR6c4r1LxBpNrpGmx31vqZkQyKFUYYkE9QRSWl9qQFuHZprO4jZt0kRZY1HVm649vWrjWqp+8r+htPDYdq8Hb1/4B5Xd6f4yvZRDL4bcyA5Ci9iwOOwzWJ4j8H+K9O0K51HUtCNrZRhA8xu4n25cAfKDk8kDp3r2A3/ANj1mKFCCuVBkZv3ZBznBPIIxUnxacSfCjU2WRWGYfunI/10dbSqc8b6/M5nR9nK2jXdHnFx42ur6B4r7whDdBB8wa7Q49eNpxWdFremiWEjwDaFgfkzerjPuCuPzrbh8OT/AGU3MaZjl6Actj3qtbeGby9ugluV+Q8lxwK5ZckXZlQjOSuXk+I+qW5MKeExHt42i+UAf+OVXufiRqzEL/wjbKT2F8p/9lrpZ/AF5NZpItzF5sanKkY3Vw81le2GvSeeMR7flKt8yYHYdOTTtBq4vfTIvCfi7UNK8PWlpBoQuo49+Jftapuy7Hpj3x+FdLD421grkeDVYN3/ALQQZ/8AHaq+BfD0l94PsblYSwfzOfpIw/pXWJ4bvmiMUUckfbKHBq/7Nw81zPd+ZyuUubb8zBTxLq4bzU8CR57MNRj/APial/4S3xHMSF8GjP8A2E4/8KS88Na3Y3cNhcmZ4L5yscqPsYP6MfTFTWeg69Za42hpEgZLdZUmZtxCZxgA8Zz3NY/UMNezj+JTi2v+HOGm8U32l+KtaubvQwJp/I8yD7Up8oqmB8wBByDnjpS6x40n1jTns7nQQokAZGW6AKkdD92qfjKO5t/HOr2kqhZWaDcPT90uP0NU4dLu3tGdYSfmUKxGB+tZzhCnK3Y1jSi7O2pkoWEo86zd1zyomCkj64NdNb+Nr+yKtaaZHFCgCqnnhgMfh1qay8LnzHe4dXTHG05z607WZNOs7q2tGt1YxoEYOcKg7ZxznvWMq0Zy5UrnTHmjsNuPEur61rmh+VpCC6gE7Qotwo83cnPJ4GAtb0F34l/tK3ub3wsLmKJgxh/tCNN+OnPOK57wgkc3xB0eLcyxhZyOOQBExzXsa2Nqtq9xK8gC7ieQBgDGf++jWrcUk5E+0ZynjHxHr/jPT4LE+CVtvKO7d/akT5XHTlRjpWR4Z1DxR4R1dbmDw47W6q261OoxAMD05A6/hWx4c8WaVqniW50S7jlSKeJo45YZP4gOfz7GufXWIlmuocKyxSlJEdyTgH1raSSjzWNU4JOLbL3xJ8X6r4v8I+bc+EhYW8TK32saikuPmAxtCg9ePxrmE1fUri6ULoe+UcgfalH9K2/FuuWcvge8somdXlCfKV4OJEPXtwKzdMnjt9VmMrbVVMqSeayqW0a1FOKi1yyuieLXdXWfzB4dBlUbd32xAcenSrB8V6wUbd4dyo6/6an+FMfVrYyyeWJNrdCy+lQm5DKWjVTnBAJ/SpvLsRYpXFtrGqt51loSxZPKrfxn9OCK674ffEPWNB8Fafp1r4S+3wReZtuP7RSLfmRmPylSRgkj8Kw7dnEwWSMqFPzYNaPgaIHwdp7Hv5n/AKMavSyzD08VUcKmiSvocOMqyw8FKn3Oqufibq14m24+HiSD/a1WP/4iuXudR+03b3H/AAr2SPecsqaxHgn/AL4rpY7VJOWcRjtkZzULRBSRXvLJ8Ltd/ev8jzP7Sr9l/XzK2meM73R8mx+HpjcjBc6whJH/AHxXL+br3iTx7rmr2nhjdOBAJrb7fGPJzFtHzHAbcFzwOK7LAAACgVneGGaPxB4x2uFGbHP/AHw1cGOy3D0afNG+vn5P/I6sNjKtaTjKxg3nhfxrdztKPCyR5AGFvYOn51nyeBvG0pf/AIp/YHPIS8hH4feziveHv7ay0cX13KFhTAZwC3sKwr3x3p1tGrRWd3IHHyM6bFP4mvPhhcOopr8zrVarHRHkf/CAeMAr+X4cZXYYJ+3w4x9M1marp+v+GNR0ufVdKFux83yUE8bBzgBj8pOMZHWvb7nxmLaJJzpkxgBPmvu+7g9R61wPxc1Sx1WXwzPZy71Budy4wy8R4yKmpRoqLcXqi4SqXTa0OKbxFcqHZ7GUbyAcXKj3/u+vNImqLeFUTRWaTcFDfalBJPHXbSRLF58YkiEkZIJXOMjvXYS+FLO0t4Lm2ZlKziQqf7uQfzrzm4xOyHNMzG8BeM0LSjw0yp94j7dCeB/wKqGuWetReG7qaTQ2s7HCq7i7jYL864+Uc5Jx+dfQsd7FeaFJNFIHJjYfIe+OPxryjx6r2/g/UYwMxyCLP+ywkSpptz1tszeUVG6vujnzqOrZ48PY5z/x+J/hUg1jWAmz/hHyQeo+2rz+lLNrNy5KQQwREnAJ/eNjPp0FS6Wuq6td+XGbi5jiIZhGgC7vwHTAPGa9aWGwq0Sf3nmKcyFdZ1oHbHoJXPYXif4U66vNfgbE/h50z/C94hI9jxxWlY3ciGVryxmhdV6OANpDLwf8frXReLNYtb/URskjUkK0qhcYboQfccUlhMPKaSvYbnO2p8+UUUVzmh6n4QtLmfwxYeVGro2/PHI/eN0/KuqsdL1LT7j7a0L+VEh+Uggtkevb/wCtVf4carcWfg3TVUWjIpkChl/eA+ax613C+IgrldpRWGRluremPesXJ3tYak09jnW0lprOW7gjkN3GNxyxCMT/APrqMWUhtVlaVSZMfJy2BnrkV0E3iySKBvKt1aXaQsaOMH6e/t7U2y1iyurctc6Ykcw6q0YXH41nGUo7pjnVu/hsZXwu0iLU/FvjRLrOwCzDKP4g0b1zPiHRLLS9ZuLDyVDCQKGU427SST+WK9E+G0kEvxF8evbgCJv7OwB6+S+f1zXN/FV4dM8ZLckfJPCN4HrjBP5VU1tJCTucWkWm6fexSzr5sYb5l7DIwDjvWx4eFrDrc0kQAMlqAwHY54/lXKT6t9sjdHRWlcgARrgYHSt7wrDvu8htzN99v5CnUWg0aviS/aHW/COo3RVV36iFLdOIkUH865/V9Us7nUklMpkAHzMecHPYVo/FGN4l8JW8o+RFuwMe4jzXCtpkjqPssp9cMTmuilPlgkRa7ubWhyRP4vtSqu8TyMMKMEgqeK39a8NX+p63JHZ2jLatCGVDtzuHtn9a4eCSXSLpboyTJPF80ZVeN2P5cmuh0vxprrXKT77Zs7lBZRnAHWtHK4W7nL6xbKlhciNgxgdVkx/CScf0r1bQPCFpbajqxvwsluCuw+buVs55H6V5VqlpeW+l3lzK8Xl3UinCsCT82eR2616b4W8Ty2trtvdHT7CcxNcwqSYjzgEckgfp6GsZ2epUW0mu52vifSbWTTfKZE8jayHC+m3P55X8q8XudOi03W5wAu3cPLO7OR9K9j1a/wDDyeD7S0HiKJ3VVmFz5255SGXIOBklsYIxXlGp3U2reII4I7VVjd/lUp8+3rk+mcdP1puz1Yotq9jKj0uSa7dgp2ls12XgPW2svBNinllhCsxBDf7bt/OtW202KCDGzn3Fcp4PIPhS0U9CJB/4+1cjUaiakbKo4vQ1dPvlvoknk35kUMzMc5J6n881l3VvfW0pmtwsk7S4QtztT0A9etWoIG0yHTAAGSQCNl7qckj+tW7V7iTVVhmRFEShztbOev8A9auWUZKbtszuUouCv0/Q7zSLuzh0e1tpblEuYk/eI0fQnnGfauc8NTeX8RfFoi1mOyidrMlgVHmDymOQD6f1okk85BGwbdyeTj8qxfD/ANgPijxSNT4tN1mztjlcIxyO+cZ6V0UKKhNyTOKpVco2aOtg8B6vp19Jrmh6xavZyhmWS6JU4c/MMYIHPpXSad4c8RxQIRqcTSYLSA8qWYk5Bxz19Kj0vx14US0jtLXXrZYVGAk8bjj05FYviz4hm4zp+hXvlxRRNPeX1soLbRjCR7hgEkjnHFdpgP1fU9W07XV0q5viZjGHJRAVJJ4XOOpH8656zXb8YfCsCy3Erot5nzF2hc254Xrx/nFYtrqlzrVza3iXdw3l3O2QXRBmDbcgeYANylVOARkFataPqrXHxb8P6g0nmosl6uARjIgIJH14NA1ua/xJvI0e10y+3RSx2yhtyB+rZzlQATgVg3FxEcpDftADaiFRCrAZ84P2P93it3xbdWl5qKatqOUig3riTG1kyeQBya5e71vS7y1jW1trW1t5wfKmgJaVSoyFOScZ4pycrpRO/DU8M4ylWTbW1na5vyMJdMhTzHui9zh3ZcvtLk456YBFUvFKxw/DvX4kjZTsgJDMGK/v09DxWfFr2p3NkI1sEF1I4Z7lmI4HTCrijX7l0+H2uW88ivcy+S0jKMZxKn9c0X5iZ1YxpypQWl3+h6rplrBFD542x5H3TxkGsa1u7a0NxHAyiUlyh/2j0Nclq2uy30ccRkYIP7pxz0Nd14Z0XQp7CGU4klWML5mSCSeuRSqUZWUjip1o3sZdrLeDU5rOW+aSO3jWVLpXwZG7qR0rlPG8E2pNFqdqjxwoDGZl6g9a9POjabaTpuChAcj5uvPpV67tbCbTpLIRxLAVI2AYGDWcUkzSburHnfgrWZtF+D+lXluIWMDStKspxuTz3yAfWui0fxtcNff8TJIILSVd0U2QFX23dDnisDwHYW+p/CGytLhZNkiTgmL73+ufp71x0HhXV7q3mtNO0W8igZiPtFwNrkehBOB+ArVya2MlY9M8S+NNMvms7TT2e+nW5SQm2jLhQPfpWjY6g0mpz6tfReTI8Yihh3ZKoDnLH1J7V5FYXuv+Hr42rRndH8phnAIx/s//AFq6V/HCQ2pk1DTIbUjgF58bvooyacWt2KSfQ5rxQbS7+KGv38qrIkSweVAeTLIYVCrjuMjn2rRtCSrrevGGC+a8gOFU45AHYDpXNafq8OqePbnVvIVRJJEqIDkKdm3PPU/L+tdF4hk82xCW8yGXdvjCfdkx1B9wf1ArycX71Wx2UV+7MrUNSlijlNs6wqxyjvy5x3x0H45Ncrcyn7okDGX55DnJ69Cf50l69yk7RT7gw7Mc5966a103T9f8LWdlZRLDrVuXLluBMuc8n1wRj6VqkqKTez/AxjFydjL8Hyi38d6Q8nQGVc/WNh/Wu88W+I5BpVxawlEiG4Aofvcnr+P8q85sYJrXxXaW1whiliMgYNwQdhqfxJeCSXy0OIkGAPWu6CVuYnm5U11K+hWd8h/tq34FrIME87mPYD8aZG0ln4inikcOzMQxzwxJzz+dejeB7BU8Lwsir+8y7nHJrzbxPYDStekjjL8neCzZPPvTITNvxDppPhu4vZZY0MRVUii5DncoJPp3plpbT3VxJPPghyCNo4x6VhXOrTyaPPaSLlZNp5/h+YGvdfCXw2t9Y8D752eC9kdnjcHjb0UEe9Zy30N5+zuuT5+p5xG0du5aSVhtOBsXcv4n1p8NuFkRYkuCzvhSFGB6k+laz6df6DqTWd1CyCNg8u9MKCOhB71h3d/rV5vitoIrG1kJJdOWf3AFQxpW1LlorRXFyGLPj+LIOCe1afgUxjwTp5aQA/vOCP8Apo1VNJsBa2UYBLFvmYtyWJ7msTwlpep6hosHk3Kww5bYJJdoPzHOPxzW2GxSwrlUv/X4nHi6XtIqPmeii4gDESXESFV3fO2BimtPBjcLmEqe4cVzx8I6kLhXvHtHt0O90+0gZGBnvT9St9B2S7YHtZNg2l9zKNvYe59aI8STlV5aa5l6Ky9XoZQyuE7K6V/P/hzW/tG0Eoi+0RbzwAGBrlrQXl14010WEqAH7OXzIFBwmP51r6Ro/h4Xy3EWsRGaMfJazYUlz3U9/pWbBdWFp4s8Sx3IfEr2xTywM58sk/qabzv69U+r8tktb6r5a+oUcD9XvNu/Q9ItPBetato2RcQuW2FH+0HZgdeB3z3qLX/DeraX4f8AMnuUlsba3jjK78gSb+WAP5Zp/h74gwWWkjSrWQCQJtty8ZLBj3PYgVT1Xxlqt5oFx4euYku7mZsfaI1wSCQynaOM9s03LojoUbamJcanqd74ZjsksZHt3zvlUdcMT/hXB+J7qeVNEs5oNr2zXAVu7AhOPwwfzroo9C8TG5jae1l8lWGUDAgjdnpn0ql48iSO70KOK1lik3XTMrx4z93GPXiolrqbKdoOFjB0uJpdVtoiqtucAITgNx0Jr2T7NHLZMi4efGXOMKPYfT+leMW4vIdQgukt5MwsGHHXBr1m01i3cKWYIWUMFfg89jXJVV9jSi7FnRJDpzf2fM4AnOVDcAkZ4/Ks/wCJqxp4B1EKAG/ddB/01Ss3xTOt1NabG5AYsV6hsjFc14l12/l8J3mnzyiaJtg3OPmGHU9e/StqEfcuTWn71mblpfwTWJuM24GNyu8iBiCPTrXU+ErY31uHIhZmUsTG4QdM9AOvIrye90AOGkhTbzk5OABXovw6SW0tJ45pBuS3Zg/mbgeOAO1dtVz+0csFHoR6np8l7FeyIDGId3zZyVIGc1Ba6rJrO6C7WN5wmA6xqCTvwckD0qxAs/2HUJpph5Txs4QdyVxzWT4ckha8lRXUsF3njsG3UQrJe8lsOUOjPG6KKKxKO+8NeJdI07QreC5nKXEe7KiNj/GTyQPQ1rN410cy+cb7LY+UCFwVPrnFFFKxXMPHjDw/K/72+XGcgmKTj/x2rMfjjw6pyt5HGwI58mQ7h3z8tFFFgubPw9+I3hXQvE/iq91HVPIgv/sn2dvIlfzNiOH6KSMEjrj2rO+Ivjfwx4mvXktNUWRFx5Z+zyqenutFFTKClbyEnY4Ow1XTIJXeS5IyMD5G4/Sus0nxf4fso4wdRVMHLAQSZ/PbRRSlTUtwuJ8QfGHh/XLrw4dP1A3CWa3AuG8l127lQL95RnlT0rBi17SUIxdAf9s3/wAKKKuwloSvr+jSoQ92M+vlP/hVAX+iJNvF31BGVjcYz7YooosVzFHU7vTHsJo7WdpJGIxuVueR6ir/AIi1qzF/ctouqSGCflgokTn6ECiiiwrnODVLrKnzcMpJDgfNz79a77wNrvhnTPOvdX1HbeudoDQyOQv1CmiiplBSVgudufiH4JI/5Cw/8Bpv/iK818P+ItMsNCgtricCZN2V2McEsT2GOhooqI0YxVkFzUl8WaLLdwMb3EcZLAmF+D2HSnjxZoS35mF9wVCk+S/+H+c0UU/ZRK52WR400PGDfk9/9VJ/8TWVpt94d1LW9ZuNU16KxhlMBhMltNIJSEIY4RTjHv68UUVaikRcuSr4HWc7PFMDLgYKWVyP5pU1pfeDrO4aQeJkkikjaGWFrWfDowwednHsfXFFFUAyaTwX5C2OneMPstt5vnSS3FpcPIzAEAZVBgAFvrmrV14h8H6Z4i8KXem6pb3C2aXK30sNpNEoLRhUO1lBOST0z70UUAQ+I/Gmh6zLtN1G8Q6fuH/XK1RtvEPhyJdpuVUKMgCB8E/980UVLjcvnZbh8X6DAoUXisAc8wyf4VT8Q+KtFv8AwzqNnb3Ie5mEYQeU43YkVj1GBwDRRTSsDm2rFeTxBo7xpi9ww65if/Ct/SfibYabAkLSJIifdyjj+lFFac7MFTSKF945sL/UPtMl+y98Kj4H6VszfFawm0+S3aZN7qF3iN+B37UUVNyrGH4S8dJpHhu009tWt7YQ7/3b20jkZct1UY711q/FHRBF82sAv/1xlH/slFFc0qEZO92UY+reM9B1dd1xrVuWUfKps5SQf97bWGL3wfI+661BJucgCCX9SVzRRVKlZWTYrHOX1/plv4huZ9JYx2e6JodoYcqoz15+9mt2Txfp11ZtJJtgvCu1hHGcP7g44OPzooolRjK1zSM5R2Ob1DU4Ly/eUSPsJwCw5wKINWW0nhmglIkiYOpwetFFXyK1ibu9y3aa3b3Xia2vtQuNkYWQSSMGfGUIXoM9cCoXn068upGnvgkefl/duc/kKKKtJJWQNtu7PQPD/jTw5peiJZyamN6DA/cSf/E1xnirUtM1XWpLy2vVkjKAAGNx0HbIoooEZWr3drPDbiCRGZYVV9qEcj6jmvorRPi54F06FIW1vZGq7QPss54HT+Ciik0U5XOd+JHjzwV4mjtJbHXzI8GQ0ItZl3g+pKDgelclB4l8OIkedTUHbg5glyv/AI7RRUuCbuNTaJR4w8PII/L1Fo3HJYQucN9CtYOgeI9PsfD9taS3whlTfuUws2MsSOgx3ooqXSTViKn7xWY99V0CY3Jn1aZxcqFlAiZQQOg+7xVlfEGgbVU6lcbVAAGZR/IUUVPsV3Zk6SZK3ibQSu037MPQpJ/PbWC+p6bcatqczXipFN5XlsyuS2Fwf4SeD60UVcKag7ocYKLL2ma9pVjewyteoQjAk7JP/ia9As/H3gu2QkaoFdgMn7PMeg4GdlFFXY0LJ+JXg/tq3/ktN/8AEVynirxd4b1fxDoE8N8JbW1+0eexhkAXciheCuTkjtRRQ1pYdye38VeDg3769THHAt5f/iaV/Fng/wCYC+DH+Fjby/8AxNFFZeyXc09qx3/CY+Egj7btAzDr5Epwf++a4fxBrNhe2ksdtcby2MDYw7j1FFFXCChsTObnualx4psG2iO4hddpBSSJ8fyq7pHjTTdJuMCaKRJYtjnbIqpn22cmiitpTctzJRSLN/4z0l9G+wWeqRRb4wry+TLuXGOB8vU4rjU19bZLmG1mkVJhsaRgdxTuOPX+VFFQrLRFXOcooooA/9k="
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 30
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T07:48:23.344085Z",
"start_time": "2025-06-20T07:48:23.339378Z"
}
},
"cell_type": "code",
"source": "print(alexnet)",
"id": "dfe977e34c3e2727",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AlexNet(\n",
" (features): Sequential(\n",
" (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n",
" (1): ReLU(inplace=True)\n",
" (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
" (4): ReLU(inplace=True)\n",
" (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (7): ReLU(inplace=True)\n",
" (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (9): ReLU(inplace=True)\n",
" (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (11): ReLU(inplace=True)\n",
" (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" )\n",
" (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n",
" (classifier): Sequential(\n",
" (0): Dropout(p=0.5, inplace=False)\n",
" (1): Linear(in_features=9216, out_features=4096, bias=True)\n",
" (2): ReLU(inplace=True)\n",
" (3): Dropout(p=0.5, inplace=False)\n",
" (4): Linear(in_features=4096, out_features=4096, bias=True)\n",
" (5): ReLU(inplace=True)\n",
" (6): Linear(in_features=4096, out_features=1000, bias=True)\n",
" )\n",
")\n"
]
}
],
"execution_count": 31
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T07:49:45.047010Z",
"start_time": "2025-06-20T07:49:45.041363Z"
}
},
"cell_type": "code",
"source": [
"# 提取分类层的输入参数\n",
"fc_in_features = alexnet.classifier[6].in_features\n",
"\n",
"# 修改与训练模型的输出分类数\n",
"alexnet.classifier[6] = nn.Linear(fc_in_features, 10)\n",
"\n",
"print(alexnet)"
],
"id": "57eaa1241f9d013c",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AlexNet(\n",
" (features): Sequential(\n",
" (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n",
" (1): ReLU(inplace=True)\n",
" (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n",
" (4): ReLU(inplace=True)\n",
" (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (7): ReLU(inplace=True)\n",
" (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (9): ReLU(inplace=True)\n",
" (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (11): ReLU(inplace=True)\n",
" (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" )\n",
" (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n",
" (classifier): Sequential(\n",
" (0): Dropout(p=0.5, inplace=False)\n",
" (1): Linear(in_features=9216, out_features=4096, bias=True)\n",
" (2): ReLU(inplace=True)\n",
" (3): Dropout(p=0.5, inplace=False)\n",
" (4): Linear(in_features=4096, out_features=4096, bias=True)\n",
" (5): ReLU(inplace=True)\n",
" (6): Linear(in_features=4096, out_features=10, bias=True)\n",
" )\n",
")\n"
]
}
],
"execution_count": 32
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T08:01:12.512110Z",
"start_time": "2025-06-20T08:01:08.901845Z"
}
},
"cell_type": "code",
"source": [
"transform = transforms.Compose([\n",
" transforms.RandomResizedCrop((224, 224)),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
"])\n",
"cifar10_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform,\n",
" target_transform=None, download=True)\n",
"\n",
"dataloader = DataLoader(cifar10_dataset, batch_size=32, shuffle=True, num_workers=0)"
],
"id": "4c1cab2895be7559",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files already downloaded and verified\n"
]
}
],
"execution_count": 45
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T08:01:13.734460Z",
"start_time": "2025-06-20T08:01:13.728889Z"
}
},
"cell_type": "code",
"source": "optimizer = torch.optim.SGD(alexnet.parameters(), lr=1e-4, weight_decay=1e-2, momentum=0.9)",
"id": "f77474bbf8498e7c",
"outputs": [],
"execution_count": 46
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-06-20T08:09:23.579389Z",
"start_time": "2025-06-20T08:01:22.730704Z"
}
},
"cell_type": "code",
"source": [
"# 训练3个Epoch\n",
"for epoch in range(3):\n",
" for item in dataloader:\n",
" output = alexnet(item[0])\n",
" target = item[1]\n",
" # 使用交叉熵损失函数\n",
" loss = nn.CrossEntropyLoss()(output, target)\n",
" print('Epoch {}, Loss {}'.format(epoch + 1, loss))\n",
" #以下代码的含义,我们在之前的文章中已经介绍过了\n",
" alexnet.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()"
],
"id": "3d0a84ab606045f4",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1, Loss 11.390161514282227\n",
"Epoch 1, Loss 11.10473346710205\n",
"Epoch 1, Loss 9.650487899780273\n",
"Epoch 1, Loss 8.740126609802246\n",
"Epoch 1, Loss 8.255596160888672\n",
"Epoch 1, Loss 8.651772499084473\n",
"Epoch 1, Loss 7.846767425537109\n",
"Epoch 1, Loss 7.975433826446533\n",
"Epoch 1, Loss 7.931630611419678\n",
"Epoch 1, Loss 7.305787563323975\n",
"Epoch 1, Loss 7.42929744720459\n",
"Epoch 1, Loss 7.351666450500488\n",
"Epoch 1, Loss 7.194794178009033\n",
"Epoch 1, Loss 6.7262864112854\n",
"Epoch 1, Loss 7.113491535186768\n",
"Epoch 1, Loss 6.258823394775391\n",
"Epoch 1, Loss 6.161075115203857\n",
"Epoch 1, Loss 6.2522382736206055\n",
"Epoch 1, Loss 5.654983997344971\n",
"Epoch 1, Loss 5.217900276184082\n",
"Epoch 1, Loss 4.8547234535217285\n",
"Epoch 1, Loss 5.045372486114502\n",
"Epoch 1, Loss 5.413811206817627\n",
"Epoch 1, Loss 5.163278579711914\n",
"Epoch 1, Loss 5.05932092666626\n",
"Epoch 1, Loss 4.755397796630859\n",
"Epoch 1, Loss 5.098104476928711\n",
"Epoch 1, Loss 4.68168830871582\n",
"Epoch 1, Loss 4.83888578414917\n",
"Epoch 1, Loss 4.25895357131958\n",
"Epoch 1, Loss 4.044596195220947\n",
"Epoch 1, Loss 4.3518500328063965\n",
"Epoch 1, Loss 4.016391277313232\n",
"Epoch 1, Loss 3.4523468017578125\n",
"Epoch 1, Loss 3.6078708171844482\n",
"Epoch 1, Loss 3.3324170112609863\n",
"Epoch 1, Loss 3.146799087524414\n",
"Epoch 1, Loss 3.3123574256896973\n",
"Epoch 1, Loss 2.9692232608795166\n",
"Epoch 1, Loss 3.150871992111206\n",
"Epoch 1, Loss 3.1080782413482666\n",
"Epoch 1, Loss 2.697796583175659\n",
"Epoch 1, Loss 2.8308873176574707\n",
"Epoch 1, Loss 2.4798989295959473\n",
"Epoch 1, Loss 3.044487237930298\n",
"Epoch 1, Loss 2.5619263648986816\n",
"Epoch 1, Loss 3.03995943069458\n",
"Epoch 1, Loss 2.5703911781311035\n",
"Epoch 1, Loss 2.622386932373047\n",
"Epoch 1, Loss 2.5821354389190674\n",
"Epoch 1, Loss 2.2508366107940674\n",
"Epoch 1, Loss 2.5529377460479736\n",
"Epoch 1, Loss 2.8578474521636963\n",
"Epoch 1, Loss 2.4568989276885986\n",
"Epoch 1, Loss 2.5013320446014404\n",
"Epoch 1, Loss 1.9693650007247925\n",
"Epoch 1, Loss 2.0936081409454346\n",
"Epoch 1, Loss 2.420494794845581\n",
"Epoch 1, Loss 2.0740833282470703\n",
"Epoch 1, Loss 2.5092103481292725\n",
"Epoch 1, Loss 2.2415835857391357\n",
"Epoch 1, Loss 2.1151254177093506\n",
"Epoch 1, Loss 2.4123313426971436\n",
"Epoch 1, Loss 2.344158172607422\n",
"Epoch 1, Loss 2.31493878364563\n",
"Epoch 1, Loss 2.190805673599243\n",
"Epoch 1, Loss 2.318197250366211\n",
"Epoch 1, Loss 2.216266393661499\n",
"Epoch 1, Loss 2.1666195392608643\n",
"Epoch 1, Loss 2.1229658126831055\n",
"Epoch 1, Loss 2.004812717437744\n",
"Epoch 1, Loss 2.013103723526001\n",
"Epoch 1, Loss 2.356696844100952\n",
"Epoch 1, Loss 2.244671106338501\n",
"Epoch 1, Loss 2.1417644023895264\n",
"Epoch 1, Loss 2.158512592315674\n",
"Epoch 1, Loss 2.3859620094299316\n",
"Epoch 1, Loss 2.2160897254943848\n",
"Epoch 1, Loss 2.147921562194824\n",
"Epoch 1, Loss 1.97897469997406\n",
"Epoch 1, Loss 1.9645150899887085\n",
"Epoch 1, Loss 2.23921799659729\n",
"Epoch 1, Loss 1.6986244916915894\n",
"Epoch 1, Loss 2.0967540740966797\n",
"Epoch 1, Loss 1.9966078996658325\n",
"Epoch 1, Loss 2.2282333374023438\n",
"Epoch 1, Loss 2.05538010597229\n",
"Epoch 1, Loss 2.0945675373077393\n",
"Epoch 1, Loss 2.4314029216766357\n",
"Epoch 1, Loss 2.187045097351074\n",
"Epoch 1, Loss 2.196854591369629\n",
"Epoch 1, Loss 1.9174386262893677\n",
"Epoch 1, Loss 1.839700698852539\n",
"Epoch 1, Loss 2.2496514320373535\n",
"Epoch 1, Loss 1.8240433931350708\n",
"Epoch 1, Loss 1.7558871507644653\n",
"Epoch 1, Loss 2.0411672592163086\n",
"Epoch 1, Loss 2.1743698120117188\n",
"Epoch 1, Loss 2.2457425594329834\n",
"Epoch 1, Loss 2.170886278152466\n",
"Epoch 1, Loss 2.0813663005828857\n",
"Epoch 1, Loss 2.0077240467071533\n",
"Epoch 1, Loss 2.152672290802002\n",
"Epoch 1, Loss 1.8744524717330933\n",
"Epoch 1, Loss 1.8593156337738037\n",
"Epoch 1, Loss 2.0026607513427734\n",
"Epoch 1, Loss 1.997119665145874\n",
"Epoch 1, Loss 1.9461400508880615\n",
"Epoch 1, Loss 1.8490214347839355\n",
"Epoch 1, Loss 1.8053253889083862\n",
"Epoch 1, Loss 1.8681100606918335\n",
"Epoch 1, Loss 1.7914729118347168\n",
"Epoch 1, Loss 1.9788165092468262\n",
"Epoch 1, Loss 2.0497021675109863\n",
"Epoch 1, Loss 1.9876694679260254\n",
"Epoch 1, Loss 1.8120652437210083\n",
"Epoch 1, Loss 1.7909998893737793\n",
"Epoch 1, Loss 1.8859608173370361\n",
"Epoch 1, Loss 1.8429142236709595\n",
"Epoch 1, Loss 2.0022695064544678\n",
"Epoch 1, Loss 1.733254313468933\n",
"Epoch 1, Loss 1.7776328325271606\n",
"Epoch 1, Loss 1.9475072622299194\n",
"Epoch 1, Loss 1.829969048500061\n",
"Epoch 1, Loss 1.915332555770874\n",
"Epoch 1, Loss 2.0018343925476074\n",
"Epoch 1, Loss 1.909234642982483\n",
"Epoch 1, Loss 1.781591773033142\n",
"Epoch 1, Loss 1.859167456626892\n",
"Epoch 1, Loss 2.129415988922119\n",
"Epoch 1, Loss 1.7759991884231567\n",
"Epoch 1, Loss 1.9012956619262695\n",
"Epoch 1, Loss 1.93148934841156\n",
"Epoch 1, Loss 1.9490193128585815\n",
"Epoch 1, Loss 1.9708281755447388\n",
"Epoch 1, Loss 1.9900016784667969\n",
"Epoch 1, Loss 2.2335097789764404\n",
"Epoch 1, Loss 2.0086076259613037\n",
"Epoch 1, Loss 1.91185462474823\n",
"Epoch 1, Loss 2.0486092567443848\n",
"Epoch 1, Loss 1.8756918907165527\n",
"Epoch 1, Loss 1.922384262084961\n",
"Epoch 1, Loss 1.9162771701812744\n",
"Epoch 1, Loss 2.30863881111145\n",
"Epoch 1, Loss 1.7405242919921875\n",
"Epoch 1, Loss 2.072435140609741\n",
"Epoch 1, Loss 1.9467562437057495\n",
"Epoch 1, Loss 1.6027220487594604\n",
"Epoch 1, Loss 1.8665951490402222\n",
"Epoch 1, Loss 1.8461048603057861\n",
"Epoch 1, Loss 1.788988709449768\n",
"Epoch 1, Loss 1.9649192094802856\n",
"Epoch 1, Loss 1.8493802547454834\n",
"Epoch 1, Loss 2.090841293334961\n",
"Epoch 1, Loss 2.06889009475708\n",
"Epoch 1, Loss 1.6090549230575562\n",
"Epoch 1, Loss 1.6090567111968994\n",
"Epoch 1, Loss 2.033944606781006\n",
"Epoch 1, Loss 1.574442744255066\n",
"Epoch 1, Loss 1.8012334108352661\n",
"Epoch 1, Loss 1.911574363708496\n",
"Epoch 1, Loss 1.6573156118392944\n",
"Epoch 1, Loss 1.808171033859253\n",
"Epoch 1, Loss 2.030792474746704\n",
"Epoch 1, Loss 1.7114735841751099\n",
"Epoch 1, Loss 1.6729048490524292\n",
"Epoch 1, Loss 1.8977779150009155\n",
"Epoch 1, Loss 2.01203989982605\n",
"Epoch 1, Loss 1.9247945547103882\n",
"Epoch 1, Loss 1.9593578577041626\n",
"Epoch 1, Loss 2.00467586517334\n",
"Epoch 1, Loss 1.7006726264953613\n",
"Epoch 1, Loss 1.7836061716079712\n",
"Epoch 1, Loss 1.7102396488189697\n",
"Epoch 1, Loss 1.7951672077178955\n",
"Epoch 1, Loss 1.9334559440612793\n",
"Epoch 1, Loss 1.8003500699996948\n",
"Epoch 1, Loss 1.7520798444747925\n",
"Epoch 1, Loss 1.7685191631317139\n",
"Epoch 1, Loss 1.9277746677398682\n",
"Epoch 1, Loss 2.1595067977905273\n",
"Epoch 1, Loss 1.7749875783920288\n",
"Epoch 1, Loss 1.8476790189743042\n",
"Epoch 1, Loss 1.740425705909729\n",
"Epoch 1, Loss 1.7416574954986572\n",
"Epoch 1, Loss 1.7841198444366455\n",
"Epoch 1, Loss 1.9414969682693481\n",
"Epoch 1, Loss 1.6255710124969482\n",
"Epoch 1, Loss 1.76301908493042\n",
"Epoch 1, Loss 1.7434982061386108\n",
"Epoch 1, Loss 1.4769729375839233\n",
"Epoch 1, Loss 1.6410868167877197\n",
"Epoch 1, Loss 1.984968900680542\n",
"Epoch 1, Loss 1.8557807207107544\n",
"Epoch 1, Loss 1.8334715366363525\n",
"Epoch 1, Loss 1.6681809425354004\n",
"Epoch 1, Loss 1.9186973571777344\n",
"Epoch 1, Loss 1.6244840621948242\n",
"Epoch 1, Loss 1.8782172203063965\n",
"Epoch 1, Loss 1.9548263549804688\n",
"Epoch 1, Loss 1.808607816696167\n",
"Epoch 1, Loss 1.7929818630218506\n",
"Epoch 1, Loss 1.7395025491714478\n",
"Epoch 1, Loss 1.6287509202957153\n",
"Epoch 1, Loss 1.854030728340149\n",
"Epoch 1, Loss 1.7849431037902832\n",
"Epoch 1, Loss 1.6917438507080078\n",
"Epoch 1, Loss 1.7881979942321777\n",
"Epoch 1, Loss 1.8737754821777344\n",
"Epoch 1, Loss 1.9840139150619507\n",
"Epoch 1, Loss 2.040748119354248\n",
"Epoch 1, Loss 1.784123182296753\n",
"Epoch 1, Loss 1.8795673847198486\n",
"Epoch 1, Loss 1.909524917602539\n",
"Epoch 1, Loss 1.7231237888336182\n",
"Epoch 1, Loss 1.7076764106750488\n",
"Epoch 1, Loss 1.5988054275512695\n",
"Epoch 1, Loss 1.7095640897750854\n",
"Epoch 1, Loss 1.8038264513015747\n",
"Epoch 1, Loss 1.3908846378326416\n",
"Epoch 1, Loss 1.8790314197540283\n",
"Epoch 1, Loss 1.624179482460022\n",
"Epoch 1, Loss 1.5522247552871704\n",
"Epoch 1, Loss 2.0716910362243652\n",
"Epoch 1, Loss 1.758894443511963\n",
"Epoch 1, Loss 1.4196009635925293\n",
"Epoch 1, Loss 1.754120111465454\n",
"Epoch 1, Loss 1.631662368774414\n",
"Epoch 1, Loss 2.017249345779419\n",
"Epoch 1, Loss 1.791286826133728\n",
"Epoch 1, Loss 1.648071050643921\n",
"Epoch 1, Loss 2.0191264152526855\n",
"Epoch 1, Loss 1.5867856740951538\n",
"Epoch 1, Loss 1.5980314016342163\n",
"Epoch 1, Loss 1.792881965637207\n",
"Epoch 1, Loss 1.6422427892684937\n",
"Epoch 1, Loss 1.5760972499847412\n",
"Epoch 1, Loss 1.7619928121566772\n",
"Epoch 1, Loss 1.7108908891677856\n",
"Epoch 1, Loss 1.5352228879928589\n",
"Epoch 1, Loss 1.8060669898986816\n",
"Epoch 1, Loss 1.6254026889801025\n",
"Epoch 1, Loss 1.5435885190963745\n",
"Epoch 1, Loss 1.754928708076477\n",
"Epoch 1, Loss 1.6306538581848145\n",
"Epoch 1, Loss 1.4022413492202759\n",
"Epoch 1, Loss 1.9609127044677734\n",
"Epoch 1, Loss 1.795851469039917\n",
"Epoch 1, Loss 2.1257569789886475\n",
"Epoch 1, Loss 1.8683059215545654\n",
"Epoch 1, Loss 1.6383010149002075\n",
"Epoch 1, Loss 1.6648447513580322\n",
"Epoch 1, Loss 1.6740763187408447\n",
"Epoch 1, Loss 1.7074679136276245\n",
"Epoch 1, Loss 1.63435697555542\n",
"Epoch 1, Loss 1.6114144325256348\n",
"Epoch 1, Loss 1.9356369972229004\n",
"Epoch 1, Loss 1.4554531574249268\n",
"Epoch 1, Loss 1.6876460313796997\n",
"Epoch 1, Loss 1.844913363456726\n",
"Epoch 1, Loss 1.6566756963729858\n",
"Epoch 1, Loss 1.7295408248901367\n",
"Epoch 1, Loss 1.9728142023086548\n",
"Epoch 1, Loss 1.5791298151016235\n",
"Epoch 1, Loss 1.505454659461975\n",
"Epoch 1, Loss 1.6260864734649658\n",
"Epoch 1, Loss 1.7501051425933838\n",
"Epoch 1, Loss 1.8571727275848389\n",
"Epoch 1, Loss 1.8610074520111084\n",
"Epoch 1, Loss 1.7246692180633545\n",
"Epoch 1, Loss 1.8025296926498413\n",
"Epoch 1, Loss 1.6552321910858154\n",
"Epoch 1, Loss 1.803894281387329\n",
"Epoch 1, Loss 1.7384475469589233\n",
"Epoch 1, Loss 1.6529415845870972\n",
"Epoch 1, Loss 1.723402976989746\n",
"Epoch 1, Loss 1.6311922073364258\n",
"Epoch 1, Loss 1.645974040031433\n",
"Epoch 1, Loss 2.0301053524017334\n",
"Epoch 1, Loss 1.880918264389038\n",
"Epoch 1, Loss 1.6266663074493408\n",
"Epoch 1, Loss 1.5199600458145142\n",
"Epoch 1, Loss 1.4093431234359741\n",
"Epoch 1, Loss 1.8859593868255615\n",
"Epoch 1, Loss 1.752493143081665\n",
"Epoch 1, Loss 1.6518990993499756\n",
"Epoch 1, Loss 1.631445050239563\n",
"Epoch 1, Loss 1.512643575668335\n",
"Epoch 1, Loss 1.6602154970169067\n",
"Epoch 1, Loss 1.5975916385650635\n",
"Epoch 1, Loss 1.6646537780761719\n",
"Epoch 1, Loss 1.8574987649917603\n",
"Epoch 1, Loss 1.8242039680480957\n",
"Epoch 1, Loss 1.674977421760559\n",
"Epoch 1, Loss 1.8695521354675293\n",
"Epoch 1, Loss 1.6858590841293335\n",
"Epoch 1, Loss 1.7875169515609741\n",
"Epoch 1, Loss 1.5225797891616821\n",
"Epoch 1, Loss 1.5076755285263062\n",
"Epoch 1, Loss 1.5932300090789795\n",
"Epoch 1, Loss 1.5611786842346191\n",
"Epoch 1, Loss 1.8602344989776611\n",
"Epoch 1, Loss 1.609197974205017\n",
"Epoch 1, Loss 1.4913467168807983\n",
"Epoch 1, Loss 1.8280011415481567\n",
"Epoch 1, Loss 1.3795815706253052\n",
"Epoch 1, Loss 1.8851159811019897\n",
"Epoch 1, Loss 1.7245428562164307\n",
"Epoch 1, Loss 1.7438805103302002\n",
"Epoch 1, Loss 1.691540002822876\n",
"Epoch 1, Loss 1.842980980873108\n",
"Epoch 1, Loss 2.019976854324341\n",
"Epoch 1, Loss 1.6800366640090942\n",
"Epoch 2, Loss 1.300485372543335\n",
"Epoch 2, Loss 1.784948706626892\n",
"Epoch 2, Loss 1.4291561841964722\n",
"Epoch 2, Loss 2.0613596439361572\n",
"Epoch 2, Loss 1.7472537755966187\n",
"Epoch 2, Loss 1.8874013423919678\n",
"Epoch 2, Loss 1.653011679649353\n",
"Epoch 2, Loss 1.616155743598938\n",
"Epoch 2, Loss 1.6922290325164795\n",
"Epoch 2, Loss 2.1530885696411133\n",
"Epoch 2, Loss 2.0140461921691895\n",
"Epoch 2, Loss 1.6550230979919434\n",
"Epoch 2, Loss 1.909831166267395\n",
"Epoch 2, Loss 1.6249158382415771\n",
"Epoch 2, Loss 1.6772966384887695\n",
"Epoch 2, Loss 1.4758840799331665\n",
"Epoch 2, Loss 1.3574433326721191\n",
"Epoch 2, Loss 1.6426734924316406\n",
"Epoch 2, Loss 1.656657099723816\n",
"Epoch 2, Loss 1.6859227418899536\n",
"Epoch 2, Loss 1.7225008010864258\n",
"Epoch 2, Loss 1.7683744430541992\n",
"Epoch 2, Loss 1.50262451171875\n",
"Epoch 2, Loss 1.4230449199676514\n",
"Epoch 2, Loss 2.0901670455932617\n",
"Epoch 2, Loss 1.8206089735031128\n",
"Epoch 2, Loss 1.5206626653671265\n",
"Epoch 2, Loss 1.2650506496429443\n",
"Epoch 2, Loss 1.6379344463348389\n",
"Epoch 2, Loss 1.4596773386001587\n",
"Epoch 2, Loss 1.6611775159835815\n",
"Epoch 2, Loss 1.4224178791046143\n",
"Epoch 2, Loss 1.579258918762207\n",
"Epoch 2, Loss 1.6873137950897217\n",
"Epoch 2, Loss 1.6964925527572632\n",
"Epoch 2, Loss 1.609260082244873\n",
"Epoch 2, Loss 1.7320889234542847\n",
"Epoch 2, Loss 1.6290900707244873\n",
"Epoch 2, Loss 1.293398141860962\n",
"Epoch 2, Loss 1.4279762506484985\n",
"Epoch 2, Loss 1.3718245029449463\n",
"Epoch 2, Loss 1.5147663354873657\n",
"Epoch 2, Loss 1.6692233085632324\n",
"Epoch 2, Loss 1.9885149002075195\n",
"Epoch 2, Loss 1.2877438068389893\n",
"Epoch 2, Loss 1.4702204465866089\n",
"Epoch 2, Loss 1.2480032444000244\n",
"Epoch 2, Loss 1.434686541557312\n",
"Epoch 2, Loss 1.6788338422775269\n",
"Epoch 2, Loss 1.6272554397583008\n",
"Epoch 2, Loss 1.740920901298523\n",
"Epoch 2, Loss 1.6473010778427124\n",
"Epoch 2, Loss 1.8052456378936768\n",
"Epoch 2, Loss 1.6307520866394043\n",
"Epoch 2, Loss 1.8539469242095947\n",
"Epoch 2, Loss 1.6478047370910645\n",
"Epoch 2, Loss 1.4329921007156372\n",
"Epoch 2, Loss 1.539477825164795\n",
"Epoch 2, Loss 1.424522042274475\n",
"Epoch 2, Loss 1.4489614963531494\n",
"Epoch 2, Loss 1.7238457202911377\n",
"Epoch 2, Loss 1.6953550577163696\n",
"Epoch 2, Loss 1.5163968801498413\n",
"Epoch 2, Loss 1.5332549810409546\n",
"Epoch 2, Loss 1.6442549228668213\n",
"Epoch 2, Loss 1.4431391954421997\n",
"Epoch 2, Loss 1.6149733066558838\n",
"Epoch 2, Loss 1.5853711366653442\n",
"Epoch 2, Loss 1.870877981185913\n",
"Epoch 2, Loss 1.1911654472351074\n",
"Epoch 2, Loss 1.7067879438400269\n",
"Epoch 2, Loss 1.882607340812683\n",
"Epoch 2, Loss 1.818520188331604\n",
"Epoch 2, Loss 1.7367340326309204\n",
"Epoch 2, Loss 1.5798382759094238\n",
"Epoch 2, Loss 1.4751096963882446\n",
"Epoch 2, Loss 1.6802865266799927\n",
"Epoch 2, Loss 1.6236398220062256\n",
"Epoch 2, Loss 1.636420488357544\n",
"Epoch 2, Loss 1.4924060106277466\n",
"Epoch 2, Loss 1.691157341003418\n",
"Epoch 2, Loss 1.5413718223571777\n",
"Epoch 2, Loss 2.1446926593780518\n",
"Epoch 2, Loss 1.8346779346466064\n",
"Epoch 2, Loss 2.103973150253296\n",
"Epoch 2, Loss 1.7558985948562622\n",
"Epoch 2, Loss 1.6326268911361694\n",
"Epoch 2, Loss 1.768365502357483\n",
"Epoch 2, Loss 1.7573071718215942\n",
"Epoch 2, Loss 1.3856499195098877\n",
"Epoch 2, Loss 1.5004853010177612\n",
"Epoch 2, Loss 1.6939235925674438\n",
"Epoch 2, Loss 1.6444960832595825\n",
"Epoch 2, Loss 1.6750274896621704\n",
"Epoch 2, Loss 1.919832468032837\n",
"Epoch 2, Loss 1.9656294584274292\n",
"Epoch 2, Loss 1.7102035284042358\n",
"Epoch 2, Loss 1.6626485586166382\n",
"Epoch 2, Loss 1.5556167364120483\n",
"Epoch 2, Loss 1.5860583782196045\n",
"Epoch 2, Loss 1.595888614654541\n",
"Epoch 2, Loss 1.5543204545974731\n",
"Epoch 2, Loss 1.6619356870651245\n",
"Epoch 2, Loss 1.6742863655090332\n",
"Epoch 2, Loss 1.6100677251815796\n",
"Epoch 2, Loss 1.7293599843978882\n",
"Epoch 2, Loss 1.758224368095398\n",
"Epoch 2, Loss 1.6590352058410645\n",
"Epoch 2, Loss 1.6913721561431885\n",
"Epoch 2, Loss 1.4077750444412231\n",
"Epoch 2, Loss 1.1626904010772705\n",
"Epoch 2, Loss 1.7251015901565552\n",
"Epoch 2, Loss 1.2510126829147339\n",
"Epoch 2, Loss 1.9657052755355835\n",
"Epoch 2, Loss 1.4909043312072754\n",
"Epoch 2, Loss 1.4821815490722656\n",
"Epoch 2, Loss 1.382213830947876\n",
"Epoch 2, Loss 1.548332691192627\n",
"Epoch 2, Loss 1.6348422765731812\n",
"Epoch 2, Loss 1.2901160717010498\n",
"Epoch 2, Loss 1.7978826761245728\n",
"Epoch 2, Loss 1.6333582401275635\n",
"Epoch 2, Loss 1.7142982482910156\n",
"Epoch 2, Loss 1.3097147941589355\n",
"Epoch 2, Loss 1.648378610610962\n",
"Epoch 2, Loss 1.5350890159606934\n",
"Epoch 2, Loss 1.2843588590621948\n",
"Epoch 2, Loss 1.7580673694610596\n",
"Epoch 2, Loss 1.307361125946045\n",
"Epoch 2, Loss 1.6136400699615479\n",
"Epoch 2, Loss 1.7835789918899536\n",
"Epoch 2, Loss 1.8142532110214233\n",
"Epoch 2, Loss 1.58303701877594\n",
"Epoch 2, Loss 1.6874006986618042\n",
"Epoch 2, Loss 1.3635849952697754\n",
"Epoch 2, Loss 1.7432588338851929\n",
"Epoch 2, Loss 1.512610673904419\n",
"Epoch 2, Loss 1.7223109006881714\n",
"Epoch 2, Loss 1.7032732963562012\n",
"Epoch 2, Loss 1.478933334350586\n",
"Epoch 2, Loss 1.613121747970581\n",
"Epoch 2, Loss 2.0838115215301514\n",
"Epoch 2, Loss 1.5958144664764404\n",
"Epoch 2, Loss 1.2433825731277466\n",
"Epoch 2, Loss 1.8604488372802734\n",
"Epoch 2, Loss 1.7540366649627686\n",
"Epoch 2, Loss 1.6867806911468506\n",
"Epoch 2, Loss 1.2986611127853394\n",
"Epoch 2, Loss 1.0995105504989624\n",
"Epoch 2, Loss 1.5499902963638306\n",
"Epoch 2, Loss 1.5567690134048462\n",
"Epoch 2, Loss 1.38352632522583\n",
"Epoch 2, Loss 1.5722194910049438\n",
"Epoch 2, Loss 1.2573655843734741\n",
"Epoch 2, Loss 1.7265040874481201\n",
"Epoch 2, Loss 1.432693362236023\n",
"Epoch 2, Loss 1.768494963645935\n",
"Epoch 2, Loss 1.4405817985534668\n",
"Epoch 2, Loss 1.6624199151992798\n",
"Epoch 2, Loss 1.4682323932647705\n",
"Epoch 2, Loss 1.5353881120681763\n",
"Epoch 2, Loss 1.3602796792984009\n",
"Epoch 2, Loss 1.5736920833587646\n",
"Epoch 2, Loss 2.03515625\n",
"Epoch 2, Loss 1.3737272024154663\n",
"Epoch 2, Loss 1.8202908039093018\n",
"Epoch 2, Loss 2.0836384296417236\n",
"Epoch 2, Loss 1.6040118932724\n",
"Epoch 2, Loss 1.3748340606689453\n",
"Epoch 2, Loss 1.4863075017929077\n",
"Epoch 2, Loss 1.499975562095642\n",
"Epoch 2, Loss 1.3765817880630493\n",
"Epoch 2, Loss 1.457093596458435\n",
"Epoch 2, Loss 1.6555736064910889\n",
"Epoch 2, Loss 1.4382950067520142\n",
"Epoch 2, Loss 1.453316569328308\n",
"Epoch 2, Loss 1.5730074644088745\n",
"Epoch 2, Loss 1.7737727165222168\n",
"Epoch 2, Loss 1.6523839235305786\n",
"Epoch 2, Loss 1.3266234397888184\n",
"Epoch 2, Loss 1.6159758567810059\n",
"Epoch 2, Loss 1.4704073667526245\n",
"Epoch 2, Loss 1.531602144241333\n",
"Epoch 2, Loss 2.0312156677246094\n",
"Epoch 2, Loss 1.888283133506775\n",
"Epoch 2, Loss 1.3371005058288574\n",
"Epoch 2, Loss 1.3945879936218262\n",
"Epoch 2, Loss 1.529701590538025\n",
"Epoch 2, Loss 1.7100629806518555\n",
"Epoch 2, Loss 1.3226559162139893\n",
"Epoch 2, Loss 1.8098974227905273\n",
"Epoch 2, Loss 1.7791922092437744\n",
"Epoch 2, Loss 1.6193798780441284\n",
"Epoch 2, Loss 1.859694242477417\n",
"Epoch 2, Loss 1.5189138650894165\n",
"Epoch 2, Loss 1.415958046913147\n",
"Epoch 2, Loss 1.212141752243042\n",
"Epoch 2, Loss 1.6975561380386353\n",
"Epoch 2, Loss 1.7593353986740112\n",
"Epoch 2, Loss 1.1995075941085815\n",
"Epoch 2, Loss 1.359512448310852\n",
"Epoch 2, Loss 1.4644752740859985\n",
"Epoch 2, Loss 1.4567301273345947\n",
"Epoch 2, Loss 1.4640811681747437\n",
"Epoch 2, Loss 1.5118407011032104\n",
"Epoch 2, Loss 1.3671762943267822\n",
"Epoch 2, Loss 1.4093780517578125\n",
"Epoch 2, Loss 1.6929950714111328\n",
"Epoch 2, Loss 1.421968698501587\n",
"Epoch 2, Loss 1.3280011415481567\n",
"Epoch 2, Loss 1.5840849876403809\n",
"Epoch 2, Loss 1.3747957944869995\n",
"Epoch 2, Loss 1.6173515319824219\n",
"Epoch 2, Loss 1.3797783851623535\n",
"Epoch 2, Loss 1.245814323425293\n",
"Epoch 2, Loss 1.311650276184082\n",
"Epoch 2, Loss 1.570831298828125\n",
"Epoch 2, Loss 1.7656368017196655\n",
"Epoch 2, Loss 1.4017724990844727\n",
"Epoch 2, Loss 1.1819841861724854\n",
"Epoch 2, Loss 1.2329351902008057\n",
"Epoch 2, Loss 1.3429627418518066\n",
"Epoch 2, Loss 1.5433602333068848\n",
"Epoch 2, Loss 1.2263259887695312\n",
"Epoch 2, Loss 1.44208562374115\n",
"Epoch 2, Loss 1.5704418420791626\n",
"Epoch 2, Loss 1.8433754444122314\n",
"Epoch 2, Loss 1.3556145429611206\n",
"Epoch 2, Loss 1.8337855339050293\n",
"Epoch 2, Loss 1.3890026807785034\n",
"Epoch 2, Loss 1.2915153503417969\n",
"Epoch 2, Loss 1.2885075807571411\n",
"Epoch 2, Loss 1.626181960105896\n",
"Epoch 2, Loss 1.3702009916305542\n",
"Epoch 2, Loss 1.5307343006134033\n",
"Epoch 2, Loss 1.5089809894561768\n",
"Epoch 2, Loss 1.5458707809448242\n",
"Epoch 2, Loss 1.6739248037338257\n",
"Epoch 2, Loss 1.6757007837295532\n",
"Epoch 2, Loss 1.6528023481369019\n",
"Epoch 2, Loss 2.0662283897399902\n",
"Epoch 2, Loss 1.6763783693313599\n",
"Epoch 2, Loss 1.511576771736145\n",
"Epoch 2, Loss 1.5105756521224976\n",
"Epoch 2, Loss 1.6672422885894775\n",
"Epoch 2, Loss 1.3297759294509888\n",
"Epoch 2, Loss 1.3444056510925293\n",
"Epoch 2, Loss 1.8276199102401733\n",
"Epoch 2, Loss 1.6177341938018799\n",
"Epoch 2, Loss 1.3591456413269043\n",
"Epoch 2, Loss 1.3552546501159668\n",
"Epoch 2, Loss 1.700721025466919\n",
"Epoch 2, Loss 1.5025629997253418\n",
"Epoch 2, Loss 1.7380791902542114\n",
"Epoch 2, Loss 1.4552404880523682\n",
"Epoch 2, Loss 1.4073638916015625\n",
"Epoch 2, Loss 1.685255765914917\n",
"Epoch 2, Loss 1.2512426376342773\n",
"Epoch 2, Loss 1.4989361763000488\n",
"Epoch 2, Loss 1.4337191581726074\n",
"Epoch 2, Loss 1.9238563776016235\n",
"Epoch 2, Loss 1.5253225564956665\n",
"Epoch 2, Loss 1.4192780256271362\n",
"Epoch 2, Loss 1.3466325998306274\n",
"Epoch 2, Loss 1.2324621677398682\n",
"Epoch 2, Loss 1.3456989526748657\n",
"Epoch 2, Loss 1.5006344318389893\n",
"Epoch 2, Loss 1.592153787612915\n",
"Epoch 2, Loss 1.3227531909942627\n",
"Epoch 2, Loss 1.3968530893325806\n",
"Epoch 2, Loss 1.2369649410247803\n",
"Epoch 2, Loss 1.4970403909683228\n",
"Epoch 2, Loss 1.4391765594482422\n",
"Epoch 2, Loss 1.6369444131851196\n",
"Epoch 2, Loss 1.414367914199829\n",
"Epoch 2, Loss 1.7419261932373047\n",
"Epoch 2, Loss 1.4557058811187744\n",
"Epoch 2, Loss 1.2599941492080688\n",
"Epoch 2, Loss 1.731783390045166\n",
"Epoch 2, Loss 1.608886957168579\n",
"Epoch 2, Loss 1.2529417276382446\n",
"Epoch 2, Loss 1.3802416324615479\n",
"Epoch 2, Loss 1.4927818775177002\n",
"Epoch 2, Loss 1.5472095012664795\n",
"Epoch 2, Loss 1.5669280290603638\n",
"Epoch 2, Loss 1.5150359869003296\n",
"Epoch 2, Loss 1.6746834516525269\n",
"Epoch 2, Loss 1.0480552911758423\n",
"Epoch 2, Loss 1.5535739660263062\n",
"Epoch 2, Loss 1.5265779495239258\n",
"Epoch 2, Loss 1.3840503692626953\n",
"Epoch 2, Loss 1.7055798768997192\n",
"Epoch 2, Loss 1.5464352369308472\n",
"Epoch 2, Loss 1.174098014831543\n",
"Epoch 2, Loss 1.6471370458602905\n",
"Epoch 2, Loss 1.2784475088119507\n",
"Epoch 2, Loss 1.055302381515503\n",
"Epoch 2, Loss 1.3225092887878418\n",
"Epoch 2, Loss 1.291968584060669\n",
"Epoch 2, Loss 1.1358336210250854\n",
"Epoch 2, Loss 1.5210617780685425\n",
"Epoch 2, Loss 1.2005878686904907\n",
"Epoch 2, Loss 1.7784743309020996\n",
"Epoch 2, Loss 1.112040400505066\n",
"Epoch 2, Loss 1.4387006759643555\n",
"Epoch 2, Loss 1.2630209922790527\n",
"Epoch 2, Loss 1.3373013734817505\n",
"Epoch 2, Loss 1.2956228256225586\n",
"Epoch 2, Loss 1.4301007986068726\n",
"Epoch 2, Loss 1.5055773258209229\n",
"Epoch 2, Loss 1.3266152143478394\n",
"Epoch 2, Loss 1.4556552171707153\n",
"Epoch 2, Loss 1.2938069105148315\n",
"Epoch 3, Loss 1.2657749652862549\n",
"Epoch 3, Loss 1.3685088157653809\n",
"Epoch 3, Loss 1.3917596340179443\n",
"Epoch 3, Loss 1.454487681388855\n",
"Epoch 3, Loss 1.2210859060287476\n",
"Epoch 3, Loss 1.181883692741394\n",
"Epoch 3, Loss 1.4901630878448486\n",
"Epoch 3, Loss 1.639451026916504\n",
"Epoch 3, Loss 1.2693920135498047\n",
"Epoch 3, Loss 1.4349827766418457\n",
"Epoch 3, Loss 1.2711045742034912\n",
"Epoch 3, Loss 1.339880347251892\n",
"Epoch 3, Loss 1.418124794960022\n",
"Epoch 3, Loss 1.4467421770095825\n",
"Epoch 3, Loss 1.444687843322754\n",
"Epoch 3, Loss 1.1931383609771729\n",
"Epoch 3, Loss 1.4755314588546753\n",
"Epoch 3, Loss 1.1279876232147217\n",
"Epoch 3, Loss 1.3665730953216553\n",
"Epoch 3, Loss 1.8242483139038086\n",
"Epoch 3, Loss 1.568402647972107\n",
"Epoch 3, Loss 1.4150508642196655\n",
"Epoch 3, Loss 1.6502350568771362\n",
"Epoch 3, Loss 1.5290955305099487\n",
"Epoch 3, Loss 1.2656736373901367\n",
"Epoch 3, Loss 1.5326241254806519\n",
"Epoch 3, Loss 1.5800015926361084\n",
"Epoch 3, Loss 1.3273322582244873\n",
"Epoch 3, Loss 1.6606097221374512\n",
"Epoch 3, Loss 1.1275347471237183\n",
"Epoch 3, Loss 1.5929442644119263\n",
"Epoch 3, Loss 1.332479476928711\n",
"Epoch 3, Loss 1.6427674293518066\n",
"Epoch 3, Loss 1.2133643627166748\n",
"Epoch 3, Loss 1.4062793254852295\n",
"Epoch 3, Loss 1.4059674739837646\n",
"Epoch 3, Loss 1.4475295543670654\n",
"Epoch 3, Loss 1.4280588626861572\n",
"Epoch 3, Loss 1.7738473415374756\n",
"Epoch 3, Loss 1.3956644535064697\n",
"Epoch 3, Loss 1.5311213731765747\n",
"Epoch 3, Loss 0.9934478998184204\n",
"Epoch 3, Loss 1.545434832572937\n",
"Epoch 3, Loss 1.4548133611679077\n",
"Epoch 3, Loss 1.0867449045181274\n",
"Epoch 3, Loss 1.391006588935852\n",
"Epoch 3, Loss 1.4315217733383179\n",
"Epoch 3, Loss 1.6717965602874756\n",
"Epoch 3, Loss 1.5112428665161133\n",
"Epoch 3, Loss 1.488818883895874\n",
"Epoch 3, Loss 1.6172558069229126\n",
"Epoch 3, Loss 1.2331808805465698\n",
"Epoch 3, Loss 1.4733998775482178\n",
"Epoch 3, Loss 1.3625138998031616\n",
"Epoch 3, Loss 1.4386574029922485\n",
"Epoch 3, Loss 1.3568108081817627\n",
"Epoch 3, Loss 1.258704423904419\n",
"Epoch 3, Loss 1.6578422784805298\n",
"Epoch 3, Loss 1.4115132093429565\n",
"Epoch 3, Loss 1.2691428661346436\n",
"Epoch 3, Loss 1.4916046857833862\n",
"Epoch 3, Loss 1.530895709991455\n",
"Epoch 3, Loss 1.6672450304031372\n",
"Epoch 3, Loss 1.6978107690811157\n",
"Epoch 3, Loss 1.5214213132858276\n",
"Epoch 3, Loss 1.4066779613494873\n",
"Epoch 3, Loss 1.7450149059295654\n",
"Epoch 3, Loss 1.5878835916519165\n",
"Epoch 3, Loss 1.5820975303649902\n",
"Epoch 3, Loss 1.3010077476501465\n",
"Epoch 3, Loss 1.6103583574295044\n",
"Epoch 3, Loss 1.2728753089904785\n",
"Epoch 3, Loss 1.5998402833938599\n",
"Epoch 3, Loss 1.3423200845718384\n",
"Epoch 3, Loss 1.3012176752090454\n",
"Epoch 3, Loss 1.3549573421478271\n",
"Epoch 3, Loss 1.2880171537399292\n",
"Epoch 3, Loss 1.4422558546066284\n",
"Epoch 3, Loss 1.3892611265182495\n",
"Epoch 3, Loss 1.8734943866729736\n",
"Epoch 3, Loss 1.5323463678359985\n",
"Epoch 3, Loss 1.2365837097167969\n",
"Epoch 3, Loss 1.3567500114440918\n",
"Epoch 3, Loss 1.1825237274169922\n",
"Epoch 3, Loss 1.4575679302215576\n",
"Epoch 3, Loss 1.44956636428833\n",
"Epoch 3, Loss 1.3784416913986206\n",
"Epoch 3, Loss 1.6067789793014526\n",
"Epoch 3, Loss 1.191642165184021\n",
"Epoch 3, Loss 1.6875654458999634\n",
"Epoch 3, Loss 1.5299079418182373\n",
"Epoch 3, Loss 1.601672887802124\n",
"Epoch 3, Loss 1.446716070175171\n",
"Epoch 3, Loss 1.482204556465149\n",
"Epoch 3, Loss 1.5481945276260376\n",
"Epoch 3, Loss 1.641560435295105\n",
"Epoch 3, Loss 1.1678754091262817\n",
"Epoch 3, Loss 1.2199982404708862\n",
"Epoch 3, Loss 1.5881229639053345\n",
"Epoch 3, Loss 1.4570183753967285\n",
"Epoch 3, Loss 1.6045030355453491\n",
"Epoch 3, Loss 1.8124254941940308\n",
"Epoch 3, Loss 1.1126610040664673\n",
"Epoch 3, Loss 1.514694333076477\n",
"Epoch 3, Loss 1.3265814781188965\n",
"Epoch 3, Loss 1.3347218036651611\n",
"Epoch 3, Loss 1.184769868850708\n",
"Epoch 3, Loss 1.6264007091522217\n",
"Epoch 3, Loss 1.6782984733581543\n",
"Epoch 3, Loss 1.3247326612472534\n",
"Epoch 3, Loss 1.570529818534851\n",
"Epoch 3, Loss 1.5758389234542847\n",
"Epoch 3, Loss 1.3637256622314453\n",
"Epoch 3, Loss 1.2797119617462158\n",
"Epoch 3, Loss 1.4374923706054688\n",
"Epoch 3, Loss 1.4566384553909302\n",
"Epoch 3, Loss 1.2352689504623413\n",
"Epoch 3, Loss 1.6088505983352661\n",
"Epoch 3, Loss 1.5399131774902344\n",
"Epoch 3, Loss 1.5017908811569214\n",
"Epoch 3, Loss 1.657196044921875\n",
"Epoch 3, Loss 1.3789411783218384\n",
"Epoch 3, Loss 1.2777636051177979\n",
"Epoch 3, Loss 1.6071970462799072\n",
"Epoch 3, Loss 1.6217520236968994\n",
"Epoch 3, Loss 1.2750431299209595\n",
"Epoch 3, Loss 1.499721646308899\n",
"Epoch 3, Loss 1.741183876991272\n",
"Epoch 3, Loss 1.2842175960540771\n",
"Epoch 3, Loss 2.0048739910125732\n",
"Epoch 3, Loss 1.4397671222686768\n",
"Epoch 3, Loss 1.41280996799469\n",
"Epoch 3, Loss 1.327250361442566\n",
"Epoch 3, Loss 1.3460841178894043\n",
"Epoch 3, Loss 1.3374409675598145\n",
"Epoch 3, Loss 1.3694055080413818\n",
"Epoch 3, Loss 1.6188303232192993\n",
"Epoch 3, Loss 1.5583730936050415\n",
"Epoch 3, Loss 1.1917520761489868\n",
"Epoch 3, Loss 1.3353607654571533\n",
"Epoch 3, Loss 1.2896196842193604\n",
"Epoch 3, Loss 1.3106706142425537\n",
"Epoch 3, Loss 1.3984615802764893\n",
"Epoch 3, Loss 1.4131144285202026\n",
"Epoch 3, Loss 1.7911815643310547\n",
"Epoch 3, Loss 1.4342396259307861\n",
"Epoch 3, Loss 1.2494813203811646\n",
"Epoch 3, Loss 1.3417868614196777\n",
"Epoch 3, Loss 1.1329594850540161\n",
"Epoch 3, Loss 1.3146885633468628\n",
"Epoch 3, Loss 1.1411229372024536\n",
"Epoch 3, Loss 1.4046076536178589\n",
"Epoch 3, Loss 1.422649621963501\n",
"Epoch 3, Loss 1.3979917764663696\n",
"Epoch 3, Loss 1.4007906913757324\n",
"Epoch 3, Loss 1.742323398590088\n",
"Epoch 3, Loss 1.334319829940796\n",
"Epoch 3, Loss 1.505510926246643\n",
"Epoch 3, Loss 1.5146727561950684\n",
"Epoch 3, Loss 1.3049325942993164\n",
"Epoch 3, Loss 1.5551166534423828\n",
"Epoch 3, Loss 1.5730377435684204\n",
"Epoch 3, Loss 1.4128203392028809\n",
"Epoch 3, Loss 1.3167755603790283\n",
"Epoch 3, Loss 1.518812656402588\n",
"Epoch 3, Loss 1.5243498086929321\n",
"Epoch 3, Loss 1.3108272552490234\n",
"Epoch 3, Loss 1.486115574836731\n",
"Epoch 3, Loss 1.165726900100708\n",
"Epoch 3, Loss 1.255001425743103\n",
"Epoch 3, Loss 1.2435463666915894\n",
"Epoch 3, Loss 1.4704406261444092\n",
"Epoch 3, Loss 1.3664522171020508\n",
"Epoch 3, Loss 1.4193373918533325\n",
"Epoch 3, Loss 1.3270068168640137\n",
"Epoch 3, Loss 1.2870937585830688\n",
"Epoch 3, Loss 1.6283689737319946\n",
"Epoch 3, Loss 1.6018389463424683\n",
"Epoch 3, Loss 1.1878634691238403\n",
"Epoch 3, Loss 1.181381344795227\n",
"Epoch 3, Loss 1.3414957523345947\n",
"Epoch 3, Loss 1.5913832187652588\n",
"Epoch 3, Loss 1.2617591619491577\n",
"Epoch 3, Loss 1.276902198791504\n",
"Epoch 3, Loss 1.2591112852096558\n",
"Epoch 3, Loss 1.5003361701965332\n",
"Epoch 3, Loss 1.6098048686981201\n",
"Epoch 3, Loss 1.3043162822723389\n",
"Epoch 3, Loss 1.4671623706817627\n",
"Epoch 3, Loss 1.2743574380874634\n",
"Epoch 3, Loss 1.333449363708496\n",
"Epoch 3, Loss 1.0447195768356323\n",
"Epoch 3, Loss 1.7496633529663086\n",
"Epoch 3, Loss 1.4349948167800903\n",
"Epoch 3, Loss 0.9941039681434631\n",
"Epoch 3, Loss 1.1381226778030396\n",
"Epoch 3, Loss 1.1700595617294312\n",
"Epoch 3, Loss 1.3808567523956299\n",
"Epoch 3, Loss 1.4743382930755615\n",
"Epoch 3, Loss 1.5828357934951782\n",
"Epoch 3, Loss 1.3578652143478394\n",
"Epoch 3, Loss 1.253328561782837\n",
"Epoch 3, Loss 1.6470190286636353\n",
"Epoch 3, Loss 1.3152893781661987\n",
"Epoch 3, Loss 1.3049588203430176\n",
"Epoch 3, Loss 1.75481116771698\n",
"Epoch 3, Loss 1.226052165031433\n",
"Epoch 3, Loss 1.434431552886963\n",
"Epoch 3, Loss 1.576608419418335\n",
"Epoch 3, Loss 1.5275124311447144\n",
"Epoch 3, Loss 1.2385188341140747\n",
"Epoch 3, Loss 1.1679117679595947\n",
"Epoch 3, Loss 1.4889219999313354\n",
"Epoch 3, Loss 1.3882681131362915\n",
"Epoch 3, Loss 1.471296787261963\n",
"Epoch 3, Loss 1.022072196006775\n",
"Epoch 3, Loss 1.1666314601898193\n",
"Epoch 3, Loss 1.365638017654419\n",
"Epoch 3, Loss 1.4819036722183228\n",
"Epoch 3, Loss 1.7000688314437866\n",
"Epoch 3, Loss 1.6323959827423096\n",
"Epoch 3, Loss 1.3997470140457153\n",
"Epoch 3, Loss 1.5760842561721802\n",
"Epoch 3, Loss 1.2480628490447998\n",
"Epoch 3, Loss 1.4412319660186768\n",
"Epoch 3, Loss 1.1057498455047607\n",
"Epoch 3, Loss 1.4089657068252563\n",
"Epoch 3, Loss 1.2607370615005493\n",
"Epoch 3, Loss 1.3391801118850708\n",
"Epoch 3, Loss 1.1781189441680908\n",
"Epoch 3, Loss 1.7425432205200195\n",
"Epoch 3, Loss 1.4165338277816772\n",
"Epoch 3, Loss 1.8061004877090454\n",
"Epoch 3, Loss 1.6210708618164062\n",
"Epoch 3, Loss 1.6151728630065918\n",
"Epoch 3, Loss 1.3837578296661377\n",
"Epoch 3, Loss 1.4376273155212402\n",
"Epoch 3, Loss 1.4341416358947754\n",
"Epoch 3, Loss 1.6254396438598633\n",
"Epoch 3, Loss 1.1672800779342651\n",
"Epoch 3, Loss 1.523203730583191\n",
"Epoch 3, Loss 1.3754456043243408\n",
"Epoch 3, Loss 1.3214695453643799\n",
"Epoch 3, Loss 0.9381955862045288\n",
"Epoch 3, Loss 1.6798808574676514\n",
"Epoch 3, Loss 1.4536024332046509\n",
"Epoch 3, Loss 1.3441954851150513\n",
"Epoch 3, Loss 1.3261338472366333\n",
"Epoch 3, Loss 1.459885597229004\n",
"Epoch 3, Loss 1.2846229076385498\n",
"Epoch 3, Loss 1.5398207902908325\n",
"Epoch 3, Loss 0.9090222120285034\n",
"Epoch 3, Loss 1.3650181293487549\n",
"Epoch 3, Loss 1.2454298734664917\n",
"Epoch 3, Loss 1.3336719274520874\n",
"Epoch 3, Loss 1.4035537242889404\n",
"Epoch 3, Loss 0.9969670176506042\n",
"Epoch 3, Loss 1.3733644485473633\n",
"Epoch 3, Loss 1.6806672811508179\n",
"Epoch 3, Loss 1.1753177642822266\n",
"Epoch 3, Loss 1.397196888923645\n",
"Epoch 3, Loss 1.438379168510437\n",
"Epoch 3, Loss 1.463959813117981\n",
"Epoch 3, Loss 1.4594169855117798\n",
"Epoch 3, Loss 1.2245839834213257\n",
"Epoch 3, Loss 1.248319387435913\n",
"Epoch 3, Loss 1.325327754020691\n",
"Epoch 3, Loss 1.6232614517211914\n",
"Epoch 3, Loss 1.192349910736084\n",
"Epoch 3, Loss 1.3080886602401733\n",
"Epoch 3, Loss 1.5868333578109741\n",
"Epoch 3, Loss 1.5101203918457031\n",
"Epoch 3, Loss 1.6002157926559448\n",
"Epoch 3, Loss 1.4421924352645874\n",
"Epoch 3, Loss 1.438562273979187\n",
"Epoch 3, Loss 1.22853422164917\n",
"Epoch 3, Loss 1.102024793624878\n",
"Epoch 3, Loss 1.0905317068099976\n",
"Epoch 3, Loss 1.378516435623169\n",
"Epoch 3, Loss 1.1065865755081177\n",
"Epoch 3, Loss 1.2351804971694946\n",
"Epoch 3, Loss 1.1582094430923462\n",
"Epoch 3, Loss 1.4239323139190674\n",
"Epoch 3, Loss 1.0838066339492798\n",
"Epoch 3, Loss 1.4736006259918213\n",
"Epoch 3, Loss 1.2326642274856567\n",
"Epoch 3, Loss 1.7137911319732666\n",
"Epoch 3, Loss 1.691973328590393\n",
"Epoch 3, Loss 1.3055859804153442\n",
"Epoch 3, Loss 1.0706970691680908\n",
"Epoch 3, Loss 1.3448677062988281\n",
"Epoch 3, Loss 1.5532619953155518\n",
"Epoch 3, Loss 1.263440489768982\n",
"Epoch 3, Loss 1.306041955947876\n",
"Epoch 3, Loss 1.678679347038269\n",
"Epoch 3, Loss 1.1568427085876465\n",
"Epoch 3, Loss 1.1706748008728027\n",
"Epoch 3, Loss 1.1872162818908691\n",
"Epoch 3, Loss 1.2646400928497314\n",
"Epoch 3, Loss 0.9924498200416565\n",
"Epoch 3, Loss 1.5050513744354248\n",
"Epoch 3, Loss 1.4457910060882568\n",
"Epoch 3, Loss 1.3851691484451294\n",
"Epoch 3, Loss 1.4667108058929443\n",
"Epoch 3, Loss 1.6174603700637817\n",
"Epoch 3, Loss 1.507022738456726\n",
"Epoch 3, Loss 1.4685307741165161\n",
"Epoch 3, Loss 0.9865709543228149\n",
"Epoch 3, Loss 1.5189127922058105\n",
"Epoch 3, Loss 1.8143751621246338\n",
"Epoch 3, Loss 1.5179133415222168\n",
"Epoch 3, Loss 1.0695254802703857\n",
"Epoch 3, Loss 1.039542555809021\n"
]
}
],
"execution_count": 48
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}