38 KiB
38 KiB
In [16]:
import numpy as np
In [17]:
arr_1_d = np.asarray([1, ]) print(arr_1_d)
[1]
In [27]:
arr_2_d = np.asarray([[1, 2], [3, 4]]) print(arr_2_d)
[[1 2] [3 4]]
ndim¶
ndim表示数组维度(或轴)的个数。刚才创建的数组arr_1_d的轴的个数就是1,arr_2_d的轴的个数就是2。
In [21]:
print(arr_1_d.ndim) print(arr_2_d.ndim)
1 2
In [36]:
print(arr_1_d.shape) print(arr_2_d.shape)
(1,) (2, 2)
In [64]:
arr_3_d = np.arange(6).reshape((2, 3)) np.reshape(arr_3_d, (6, 1), 'F')
Out[64]:
array([[0],
[3],
[1],
[4],
[2],
[5]])
In [68]:
np.arange(5) np.arange(2, 6) np.arange(2, 6, 2)
Out[68]:
array([2, 4])
In [73]:
np.linspace(0, 1, 5) # 从0到1,生成5个数
Out[73]:
array([0. , 0.25, 0.5 , 0.75, 1. ])
In [81]:
x = np.arange(-50, 51, 2) y = x ** 2 import matplotlib.pyplot as plt plt.plot(x, y, color='blue', label='y = x^2') # 绘制y = x^2的图像 plt.xlabel('x') # x轴标签 plt.ylabel('y') # x轴和y轴标签 plt.title('y = x^2') # 图表标题 plt.legend() # 图例 plt.grid() # 网格线 plt.show()
In [89]:
interest_score = np.random.randint(10, size=(4, 3)) print(interest_score) print(np.sum(interest_score, axis=0)) # 按列求和
[[4 0 4] [9 7 9] [5 3 6] [9 6 1]] [27 16 20]
In [97]:
arr_4_d=np.arange(18).reshape(3,2,3)
In [98]:
print(arr_4_d)
[[[ 0 1 2] [ 3 4 5]] [[ 6 7 8] [ 9 10 11]] [[12 13 14] [15 16 17]]]
In [99]:
np.max(arr_4_d,axis=0)
Out[99]:
array([[12, 13, 14],
[15, 16, 17]])
In [100]:
arr_4_d.ravel()
Out[100]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17])