247 KiB
247 KiB
In [1]:
import numpy as np import random import matplotlib.pyplot as plt from torch.utils.data import DataLoader
In [3]:
w = 2 b = 3 xlim = [-10, 10] x_train = np.random.randint(low=xlim[0], high=xlim[1], size=30) y_train = [w * x + b + random.randint(0, 2) for x in x_train] plt.plot(x_train, y_train, 'bo')
Out[3]:
[<matplotlib.lines.Line2D at 0x7b28d4b99330>]
In [4]:
import torch import torch.nn as nn class LinearModel(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.randn(1)) self.bias = nn.Parameter(torch.randn(1)) def forward(self, input): return (input * self.weight) + self.bias
In [6]:
model = LinearModel() x = torch.tensor(3) y = model(x)
In [9]:
model = LinearModel() # 定义优化器 optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, weight_decay=1e-2, momentum=0.9) y_train = torch.tensor(y_train, dtype=torch.float32) # 训练模型 for epoch in range(1000): input = torch.from_numpy(x_train) output = model(input) loss = nn.functional.mse_loss(output, y_train) optimizer.zero_grad() loss.backward() optimizer.step()
/tmp/ipykernel_9/825497026.py:6: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). y_train = torch.tensor(y_train, dtype=torch.float32)
In [11]:
for param in model.parameters(): print(param)
Parameter containing: tensor([2.0042], requires_grad=True) Parameter containing: tensor([3.4570], requires_grad=True)
In [12]:
class CustomLayer(nn.Module): def __init__(self, in_features, out_features): super().__init__() self.weight = nn.Parameter(torch.randn(in_features, out_features)) self.bias = nn.Parameter(torch.randn(out_features)) def forward(self, input): return input @ self.weight + self.bias
In [15]:
print(model.state_dict()) torch.save(model.state_dict(), './data/linear_model.pth')
OrderedDict([('weight', tensor([2.0042])), ('bias', tensor([3.4570]))])
In [16]:
# 定义网络结构 linear_model = LinearModel() # 加载保存的参数 linear_model.load_state_dict(torch.load('./data/linear_model.pth')) linear_model.eval() for param in linear_model.parameters(): print(param)
Parameter containing: tensor([2.0042], requires_grad=True) Parameter containing: tensor([3.4570], requires_grad=True)
In [22]:
import os os.environ['TORCH_HOME'] = './data' # 修改存储目录 import torch print(torch.hub.get_dir()) # 默认是 ~/.cache/torch
./data/hub
In [43]:
import torchvision.models as models alexnet = models.alexnet(pretrained=True)
In [47]:
from PIL import Image import torchvision from torchvision import transforms im = Image.open('./data/images/dog.jpg') transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) input_tensor = transform(im).unsqueeze(0) alexnet.eval() alexnet(input_tensor).argmax()
Out[47]:
tensor(263)
In [27]:
cifar10_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(), target_transform=None, download=True)
Using downloaded and verified file: ./data/cifar-10-python.tar.gz Extracting ./data/cifar-10-python.tar.gz to ./data
In [30]:
from torch.utils.data import DataLoader tensor_dataloader = DataLoader(cifar10_dataset, batch_size=48) data_iter = iter(tensor_dataloader) images, labels = next(data_iter) print(images.shape) grid_tensor = torchvision.utils.make_grid(images, nrow=16, padding=2) grid_img = transforms.ToPILImage()(grid_tensor) grid_img.show()
torch.Size([48, 3, 32, 32])
In [31]:
print(alexnet)
AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace=True)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace=True)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
In [32]:
# 提取分类层的输入参数 fc_in_features = alexnet.classifier[6].in_features # 修改与训练模型的输出分类数 alexnet.classifier[6] = nn.Linear(fc_in_features, 10) print(alexnet)
AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace=True)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace=True)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=4096, out_features=10, bias=True)
)
)
In [45]:
transform = transforms.Compose([ transforms.RandomResizedCrop((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) cifar10_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform, target_transform=None, download=True) dataloader = DataLoader(cifar10_dataset, batch_size=32, shuffle=True, num_workers=0)
Files already downloaded and verified
In [46]:
optimizer = torch.optim.SGD(alexnet.parameters(), lr=1e-4, weight_decay=1e-2, momentum=0.9)
In [48]:
# 训练3个Epoch for epoch in range(3): for item in dataloader: output = alexnet(item[0]) target = item[1] # 使用交叉熵损失函数 loss = nn.CrossEntropyLoss()(output, target) print('Epoch {}, Loss {}'.format(epoch + 1, loss)) #以下代码的含义,我们在之前的文章中已经介绍过了 alexnet.zero_grad() loss.backward() optimizer.step()
Epoch 1, Loss 11.390161514282227 Epoch 1, Loss 11.10473346710205 Epoch 1, Loss 9.650487899780273 Epoch 1, Loss 8.740126609802246 Epoch 1, Loss 8.255596160888672 Epoch 1, Loss 8.651772499084473 Epoch 1, Loss 7.846767425537109 Epoch 1, Loss 7.975433826446533 Epoch 1, Loss 7.931630611419678 Epoch 1, Loss 7.305787563323975 Epoch 1, Loss 7.42929744720459 Epoch 1, Loss 7.351666450500488 Epoch 1, Loss 7.194794178009033 Epoch 1, Loss 6.7262864112854 Epoch 1, Loss 7.113491535186768 Epoch 1, Loss 6.258823394775391 Epoch 1, Loss 6.161075115203857 Epoch 1, Loss 6.2522382736206055 Epoch 1, Loss 5.654983997344971 Epoch 1, Loss 5.217900276184082 Epoch 1, Loss 4.8547234535217285 Epoch 1, Loss 5.045372486114502 Epoch 1, Loss 5.413811206817627 Epoch 1, Loss 5.163278579711914 Epoch 1, Loss 5.05932092666626 Epoch 1, Loss 4.755397796630859 Epoch 1, Loss 5.098104476928711 Epoch 1, Loss 4.68168830871582 Epoch 1, Loss 4.83888578414917 Epoch 1, Loss 4.25895357131958 Epoch 1, Loss 4.044596195220947 Epoch 1, Loss 4.3518500328063965 Epoch 1, Loss 4.016391277313232 Epoch 1, Loss 3.4523468017578125 Epoch 1, Loss 3.6078708171844482 Epoch 1, Loss 3.3324170112609863 Epoch 1, Loss 3.146799087524414 Epoch 1, Loss 3.3123574256896973 Epoch 1, Loss 2.9692232608795166 Epoch 1, Loss 3.150871992111206 Epoch 1, Loss 3.1080782413482666 Epoch 1, Loss 2.697796583175659 Epoch 1, Loss 2.8308873176574707 Epoch 1, Loss 2.4798989295959473 Epoch 1, Loss 3.044487237930298 Epoch 1, Loss 2.5619263648986816 Epoch 1, Loss 3.03995943069458 Epoch 1, Loss 2.5703911781311035 Epoch 1, Loss 2.622386932373047 Epoch 1, Loss 2.5821354389190674 Epoch 1, Loss 2.2508366107940674 Epoch 1, Loss 2.5529377460479736 Epoch 1, Loss 2.8578474521636963 Epoch 1, Loss 2.4568989276885986 Epoch 1, Loss 2.5013320446014404 Epoch 1, Loss 1.9693650007247925 Epoch 1, Loss 2.0936081409454346 Epoch 1, Loss 2.420494794845581 Epoch 1, Loss 2.0740833282470703 Epoch 1, Loss 2.5092103481292725 Epoch 1, Loss 2.2415835857391357 Epoch 1, Loss 2.1151254177093506 Epoch 1, Loss 2.4123313426971436 Epoch 1, Loss 2.344158172607422 Epoch 1, Loss 2.31493878364563 Epoch 1, Loss 2.190805673599243 Epoch 1, Loss 2.318197250366211 Epoch 1, Loss 2.216266393661499 Epoch 1, Loss 2.1666195392608643 Epoch 1, Loss 2.1229658126831055 Epoch 1, Loss 2.004812717437744 Epoch 1, Loss 2.013103723526001 Epoch 1, Loss 2.356696844100952 Epoch 1, Loss 2.244671106338501 Epoch 1, Loss 2.1417644023895264 Epoch 1, Loss 2.158512592315674 Epoch 1, Loss 2.3859620094299316 Epoch 1, Loss 2.2160897254943848 Epoch 1, Loss 2.147921562194824 Epoch 1, Loss 1.97897469997406 Epoch 1, Loss 1.9645150899887085 Epoch 1, Loss 2.23921799659729 Epoch 1, Loss 1.6986244916915894 Epoch 1, Loss 2.0967540740966797 Epoch 1, Loss 1.9966078996658325 Epoch 1, Loss 2.2282333374023438 Epoch 1, Loss 2.05538010597229 Epoch 1, Loss 2.0945675373077393 Epoch 1, Loss 2.4314029216766357 Epoch 1, Loss 2.187045097351074 Epoch 1, Loss 2.196854591369629 Epoch 1, Loss 1.9174386262893677 Epoch 1, Loss 1.839700698852539 Epoch 1, Loss 2.2496514320373535 Epoch 1, Loss 1.8240433931350708 Epoch 1, Loss 1.7558871507644653 Epoch 1, Loss 2.0411672592163086 Epoch 1, Loss 2.1743698120117188 Epoch 1, Loss 2.2457425594329834 Epoch 1, Loss 2.170886278152466 Epoch 1, Loss 2.0813663005828857 Epoch 1, Loss 2.0077240467071533 Epoch 1, Loss 2.152672290802002 Epoch 1, Loss 1.8744524717330933 Epoch 1, Loss 1.8593156337738037 Epoch 1, Loss 2.0026607513427734 Epoch 1, Loss 1.997119665145874 Epoch 1, Loss 1.9461400508880615 Epoch 1, Loss 1.8490214347839355 Epoch 1, Loss 1.8053253889083862 Epoch 1, Loss 1.8681100606918335 Epoch 1, Loss 1.7914729118347168 Epoch 1, Loss 1.9788165092468262 Epoch 1, Loss 2.0497021675109863 Epoch 1, Loss 1.9876694679260254 Epoch 1, Loss 1.8120652437210083 Epoch 1, Loss 1.7909998893737793 Epoch 1, Loss 1.8859608173370361 Epoch 1, Loss 1.8429142236709595 Epoch 1, Loss 2.0022695064544678 Epoch 1, Loss 1.733254313468933 Epoch 1, Loss 1.7776328325271606 Epoch 1, Loss 1.9475072622299194 Epoch 1, Loss 1.829969048500061 Epoch 1, Loss 1.915332555770874 Epoch 1, Loss 2.0018343925476074 Epoch 1, Loss 1.909234642982483 Epoch 1, Loss 1.781591773033142 Epoch 1, Loss 1.859167456626892 Epoch 1, Loss 2.129415988922119 Epoch 1, Loss 1.7759991884231567 Epoch 1, Loss 1.9012956619262695 Epoch 1, Loss 1.93148934841156 Epoch 1, Loss 1.9490193128585815 Epoch 1, Loss 1.9708281755447388 Epoch 1, Loss 1.9900016784667969 Epoch 1, Loss 2.2335097789764404 Epoch 1, Loss 2.0086076259613037 Epoch 1, Loss 1.91185462474823 Epoch 1, Loss 2.0486092567443848 Epoch 1, Loss 1.8756918907165527 Epoch 1, Loss 1.922384262084961 Epoch 1, Loss 1.9162771701812744 Epoch 1, Loss 2.30863881111145 Epoch 1, Loss 1.7405242919921875 Epoch 1, Loss 2.072435140609741 Epoch 1, Loss 1.9467562437057495 Epoch 1, Loss 1.6027220487594604 Epoch 1, Loss 1.8665951490402222 Epoch 1, Loss 1.8461048603057861 Epoch 1, Loss 1.788988709449768 Epoch 1, Loss 1.9649192094802856 Epoch 1, Loss 1.8493802547454834 Epoch 1, Loss 2.090841293334961 Epoch 1, Loss 2.06889009475708 Epoch 1, Loss 1.6090549230575562 Epoch 1, Loss 1.6090567111968994 Epoch 1, Loss 2.033944606781006 Epoch 1, Loss 1.574442744255066 Epoch 1, Loss 1.8012334108352661 Epoch 1, Loss 1.911574363708496 Epoch 1, Loss 1.6573156118392944 Epoch 1, Loss 1.808171033859253 Epoch 1, Loss 2.030792474746704 Epoch 1, Loss 1.7114735841751099 Epoch 1, Loss 1.6729048490524292 Epoch 1, Loss 1.8977779150009155 Epoch 1, Loss 2.01203989982605 Epoch 1, Loss 1.9247945547103882 Epoch 1, Loss 1.9593578577041626 Epoch 1, Loss 2.00467586517334 Epoch 1, Loss 1.7006726264953613 Epoch 1, Loss 1.7836061716079712 Epoch 1, Loss 1.7102396488189697 Epoch 1, Loss 1.7951672077178955 Epoch 1, Loss 1.9334559440612793 Epoch 1, Loss 1.8003500699996948 Epoch 1, Loss 1.7520798444747925 Epoch 1, Loss 1.7685191631317139 Epoch 1, Loss 1.9277746677398682 Epoch 1, Loss 2.1595067977905273 Epoch 1, Loss 1.7749875783920288 Epoch 1, Loss 1.8476790189743042 Epoch 1, Loss 1.740425705909729 Epoch 1, Loss 1.7416574954986572 Epoch 1, Loss 1.7841198444366455 Epoch 1, Loss 1.9414969682693481 Epoch 1, Loss 1.6255710124969482 Epoch 1, Loss 1.76301908493042 Epoch 1, Loss 1.7434982061386108 Epoch 1, Loss 1.4769729375839233 Epoch 1, Loss 1.6410868167877197 Epoch 1, Loss 1.984968900680542 Epoch 1, Loss 1.8557807207107544 Epoch 1, Loss 1.8334715366363525 Epoch 1, Loss 1.6681809425354004 Epoch 1, Loss 1.9186973571777344 Epoch 1, Loss 1.6244840621948242 Epoch 1, Loss 1.8782172203063965 Epoch 1, Loss 1.9548263549804688 Epoch 1, Loss 1.808607816696167 Epoch 1, Loss 1.7929818630218506 Epoch 1, Loss 1.7395025491714478 Epoch 1, Loss 1.6287509202957153 Epoch 1, Loss 1.854030728340149 Epoch 1, Loss 1.7849431037902832 Epoch 1, Loss 1.6917438507080078 Epoch 1, Loss 1.7881979942321777 Epoch 1, Loss 1.8737754821777344 Epoch 1, Loss 1.9840139150619507 Epoch 1, Loss 2.040748119354248 Epoch 1, Loss 1.784123182296753 Epoch 1, Loss 1.8795673847198486 Epoch 1, Loss 1.909524917602539 Epoch 1, Loss 1.7231237888336182 Epoch 1, Loss 1.7076764106750488 Epoch 1, Loss 1.5988054275512695 Epoch 1, Loss 1.7095640897750854 Epoch 1, Loss 1.8038264513015747 Epoch 1, Loss 1.3908846378326416 Epoch 1, Loss 1.8790314197540283 Epoch 1, Loss 1.624179482460022 Epoch 1, Loss 1.5522247552871704 Epoch 1, Loss 2.0716910362243652 Epoch 1, Loss 1.758894443511963 Epoch 1, Loss 1.4196009635925293 Epoch 1, Loss 1.754120111465454 Epoch 1, Loss 1.631662368774414 Epoch 1, Loss 2.017249345779419 Epoch 1, Loss 1.791286826133728 Epoch 1, Loss 1.648071050643921 Epoch 1, Loss 2.0191264152526855 Epoch 1, Loss 1.5867856740951538 Epoch 1, Loss 1.5980314016342163 Epoch 1, Loss 1.792881965637207 Epoch 1, Loss 1.6422427892684937 Epoch 1, Loss 1.5760972499847412 Epoch 1, Loss 1.7619928121566772 Epoch 1, Loss 1.7108908891677856 Epoch 1, Loss 1.5352228879928589 Epoch 1, Loss 1.8060669898986816 Epoch 1, Loss 1.6254026889801025 Epoch 1, Loss 1.5435885190963745 Epoch 1, Loss 1.754928708076477 Epoch 1, Loss 1.6306538581848145 Epoch 1, Loss 1.4022413492202759 Epoch 1, Loss 1.9609127044677734 Epoch 1, Loss 1.795851469039917 Epoch 1, Loss 2.1257569789886475 Epoch 1, Loss 1.8683059215545654 Epoch 1, Loss 1.6383010149002075 Epoch 1, Loss 1.6648447513580322 Epoch 1, Loss 1.6740763187408447 Epoch 1, Loss 1.7074679136276245 Epoch 1, Loss 1.63435697555542 Epoch 1, Loss 1.6114144325256348 Epoch 1, Loss 1.9356369972229004 Epoch 1, Loss 1.4554531574249268 Epoch 1, Loss 1.6876460313796997 Epoch 1, Loss 1.844913363456726 Epoch 1, Loss 1.6566756963729858 Epoch 1, Loss 1.7295408248901367 Epoch 1, Loss 1.9728142023086548 Epoch 1, Loss 1.5791298151016235 Epoch 1, Loss 1.505454659461975 Epoch 1, Loss 1.6260864734649658 Epoch 1, Loss 1.7501051425933838 Epoch 1, Loss 1.8571727275848389 Epoch 1, Loss 1.8610074520111084 Epoch 1, Loss 1.7246692180633545 Epoch 1, Loss 1.8025296926498413 Epoch 1, Loss 1.6552321910858154 Epoch 1, Loss 1.803894281387329 Epoch 1, Loss 1.7384475469589233 Epoch 1, Loss 1.6529415845870972 Epoch 1, Loss 1.723402976989746 Epoch 1, Loss 1.6311922073364258 Epoch 1, Loss 1.645974040031433 Epoch 1, Loss 2.0301053524017334 Epoch 1, Loss 1.880918264389038 Epoch 1, Loss 1.6266663074493408 Epoch 1, Loss 1.5199600458145142 Epoch 1, Loss 1.4093431234359741 Epoch 1, Loss 1.8859593868255615 Epoch 1, Loss 1.752493143081665 Epoch 1, Loss 1.6518990993499756 Epoch 1, Loss 1.631445050239563 Epoch 1, Loss 1.512643575668335 Epoch 1, Loss 1.6602154970169067 Epoch 1, Loss 1.5975916385650635 Epoch 1, Loss 1.6646537780761719 Epoch 1, Loss 1.8574987649917603 Epoch 1, Loss 1.8242039680480957 Epoch 1, Loss 1.674977421760559 Epoch 1, Loss 1.8695521354675293 Epoch 1, Loss 1.6858590841293335 Epoch 1, Loss 1.7875169515609741 Epoch 1, Loss 1.5225797891616821 Epoch 1, Loss 1.5076755285263062 Epoch 1, Loss 1.5932300090789795 Epoch 1, Loss 1.5611786842346191 Epoch 1, Loss 1.8602344989776611 Epoch 1, Loss 1.609197974205017 Epoch 1, Loss 1.4913467168807983 Epoch 1, Loss 1.8280011415481567 Epoch 1, Loss 1.3795815706253052 Epoch 1, Loss 1.8851159811019897 Epoch 1, Loss 1.7245428562164307 Epoch 1, Loss 1.7438805103302002 Epoch 1, Loss 1.691540002822876 Epoch 1, Loss 1.842980980873108 Epoch 1, Loss 2.019976854324341 Epoch 1, Loss 1.6800366640090942 Epoch 2, Loss 1.300485372543335 Epoch 2, Loss 1.784948706626892 Epoch 2, Loss 1.4291561841964722 Epoch 2, Loss 2.0613596439361572 Epoch 2, Loss 1.7472537755966187 Epoch 2, Loss 1.8874013423919678 Epoch 2, Loss 1.653011679649353 Epoch 2, Loss 1.616155743598938 Epoch 2, Loss 1.6922290325164795 Epoch 2, Loss 2.1530885696411133 Epoch 2, Loss 2.0140461921691895 Epoch 2, Loss 1.6550230979919434 Epoch 2, Loss 1.909831166267395 Epoch 2, Loss 1.6249158382415771 Epoch 2, Loss 1.6772966384887695 Epoch 2, Loss 1.4758840799331665 Epoch 2, Loss 1.3574433326721191 Epoch 2, Loss 1.6426734924316406 Epoch 2, Loss 1.656657099723816 Epoch 2, Loss 1.6859227418899536 Epoch 2, Loss 1.7225008010864258 Epoch 2, Loss 1.7683744430541992 Epoch 2, Loss 1.50262451171875 Epoch 2, Loss 1.4230449199676514 Epoch 2, Loss 2.0901670455932617 Epoch 2, Loss 1.8206089735031128 Epoch 2, Loss 1.5206626653671265 Epoch 2, Loss 1.2650506496429443 Epoch 2, Loss 1.6379344463348389 Epoch 2, Loss 1.4596773386001587 Epoch 2, Loss 1.6611775159835815 Epoch 2, Loss 1.4224178791046143 Epoch 2, Loss 1.579258918762207 Epoch 2, Loss 1.6873137950897217 Epoch 2, Loss 1.6964925527572632 Epoch 2, Loss 1.609260082244873 Epoch 2, Loss 1.7320889234542847 Epoch 2, Loss 1.6290900707244873 Epoch 2, Loss 1.293398141860962 Epoch 2, Loss 1.4279762506484985 Epoch 2, Loss 1.3718245029449463 Epoch 2, Loss 1.5147663354873657 Epoch 2, Loss 1.6692233085632324 Epoch 2, Loss 1.9885149002075195 Epoch 2, Loss 1.2877438068389893 Epoch 2, Loss 1.4702204465866089 Epoch 2, Loss 1.2480032444000244 Epoch 2, Loss 1.434686541557312 Epoch 2, Loss 1.6788338422775269 Epoch 2, Loss 1.6272554397583008 Epoch 2, Loss 1.740920901298523 Epoch 2, Loss 1.6473010778427124 Epoch 2, Loss 1.8052456378936768 Epoch 2, Loss 1.6307520866394043 Epoch 2, Loss 1.8539469242095947 Epoch 2, Loss 1.6478047370910645 Epoch 2, Loss 1.4329921007156372 Epoch 2, Loss 1.539477825164795 Epoch 2, Loss 1.424522042274475 Epoch 2, Loss 1.4489614963531494 Epoch 2, Loss 1.7238457202911377 Epoch 2, Loss 1.6953550577163696 Epoch 2, Loss 1.5163968801498413 Epoch 2, Loss 1.5332549810409546 Epoch 2, Loss 1.6442549228668213 Epoch 2, Loss 1.4431391954421997 Epoch 2, Loss 1.6149733066558838 Epoch 2, Loss 1.5853711366653442 Epoch 2, Loss 1.870877981185913 Epoch 2, Loss 1.1911654472351074 Epoch 2, Loss 1.7067879438400269 Epoch 2, Loss 1.882607340812683 Epoch 2, Loss 1.818520188331604 Epoch 2, Loss 1.7367340326309204 Epoch 2, Loss 1.5798382759094238 Epoch 2, Loss 1.4751096963882446 Epoch 2, Loss 1.6802865266799927 Epoch 2, Loss 1.6236398220062256 Epoch 2, Loss 1.636420488357544 Epoch 2, Loss 1.4924060106277466 Epoch 2, Loss 1.691157341003418 Epoch 2, Loss 1.5413718223571777 Epoch 2, Loss 2.1446926593780518 Epoch 2, Loss 1.8346779346466064 Epoch 2, Loss 2.103973150253296 Epoch 2, Loss 1.7558985948562622 Epoch 2, Loss 1.6326268911361694 Epoch 2, Loss 1.768365502357483 Epoch 2, Loss 1.7573071718215942 Epoch 2, Loss 1.3856499195098877 Epoch 2, Loss 1.5004853010177612 Epoch 2, Loss 1.6939235925674438 Epoch 2, Loss 1.6444960832595825 Epoch 2, Loss 1.6750274896621704 Epoch 2, Loss 1.919832468032837 Epoch 2, Loss 1.9656294584274292 Epoch 2, Loss 1.7102035284042358 Epoch 2, Loss 1.6626485586166382 Epoch 2, Loss 1.5556167364120483 Epoch 2, Loss 1.5860583782196045 Epoch 2, Loss 1.595888614654541 Epoch 2, Loss 1.5543204545974731 Epoch 2, Loss 1.6619356870651245 Epoch 2, Loss 1.6742863655090332 Epoch 2, Loss 1.6100677251815796 Epoch 2, Loss 1.7293599843978882 Epoch 2, Loss 1.758224368095398 Epoch 2, Loss 1.6590352058410645 Epoch 2, Loss 1.6913721561431885 Epoch 2, Loss 1.4077750444412231 Epoch 2, Loss 1.1626904010772705 Epoch 2, Loss 1.7251015901565552 Epoch 2, Loss 1.2510126829147339 Epoch 2, Loss 1.9657052755355835 Epoch 2, Loss 1.4909043312072754 Epoch 2, Loss 1.4821815490722656 Epoch 2, Loss 1.382213830947876 Epoch 2, Loss 1.548332691192627 Epoch 2, Loss 1.6348422765731812 Epoch 2, Loss 1.2901160717010498 Epoch 2, Loss 1.7978826761245728 Epoch 2, Loss 1.6333582401275635 Epoch 2, Loss 1.7142982482910156 Epoch 2, Loss 1.3097147941589355 Epoch 2, Loss 1.648378610610962 Epoch 2, Loss 1.5350890159606934 Epoch 2, Loss 1.2843588590621948 Epoch 2, Loss 1.7580673694610596 Epoch 2, Loss 1.307361125946045 Epoch 2, Loss 1.6136400699615479 Epoch 2, Loss 1.7835789918899536 Epoch 2, Loss 1.8142532110214233 Epoch 2, Loss 1.58303701877594 Epoch 2, Loss 1.6874006986618042 Epoch 2, Loss 1.3635849952697754 Epoch 2, Loss 1.7432588338851929 Epoch 2, Loss 1.512610673904419 Epoch 2, Loss 1.7223109006881714 Epoch 2, Loss 1.7032732963562012 Epoch 2, Loss 1.478933334350586 Epoch 2, Loss 1.613121747970581 Epoch 2, Loss 2.0838115215301514 Epoch 2, Loss 1.5958144664764404 Epoch 2, Loss 1.2433825731277466 Epoch 2, Loss 1.8604488372802734 Epoch 2, Loss 1.7540366649627686 Epoch 2, Loss 1.6867806911468506 Epoch 2, Loss 1.2986611127853394 Epoch 2, Loss 1.0995105504989624 Epoch 2, Loss 1.5499902963638306 Epoch 2, Loss 1.5567690134048462 Epoch 2, Loss 1.38352632522583 Epoch 2, Loss 1.5722194910049438 Epoch 2, Loss 1.2573655843734741 Epoch 2, Loss 1.7265040874481201 Epoch 2, Loss 1.432693362236023 Epoch 2, Loss 1.768494963645935 Epoch 2, Loss 1.4405817985534668 Epoch 2, Loss 1.6624199151992798 Epoch 2, Loss 1.4682323932647705 Epoch 2, Loss 1.5353881120681763 Epoch 2, Loss 1.3602796792984009 Epoch 2, Loss 1.5736920833587646 Epoch 2, Loss 2.03515625 Epoch 2, Loss 1.3737272024154663 Epoch 2, Loss 1.8202908039093018 Epoch 2, Loss 2.0836384296417236 Epoch 2, Loss 1.6040118932724 Epoch 2, Loss 1.3748340606689453 Epoch 2, Loss 1.4863075017929077 Epoch 2, Loss 1.499975562095642 Epoch 2, Loss 1.3765817880630493 Epoch 2, Loss 1.457093596458435 Epoch 2, Loss 1.6555736064910889 Epoch 2, Loss 1.4382950067520142 Epoch 2, Loss 1.453316569328308 Epoch 2, Loss 1.5730074644088745 Epoch 2, Loss 1.7737727165222168 Epoch 2, Loss 1.6523839235305786 Epoch 2, Loss 1.3266234397888184 Epoch 2, Loss 1.6159758567810059 Epoch 2, Loss 1.4704073667526245 Epoch 2, Loss 1.531602144241333 Epoch 2, Loss 2.0312156677246094 Epoch 2, Loss 1.888283133506775 Epoch 2, Loss 1.3371005058288574 Epoch 2, Loss 1.3945879936218262 Epoch 2, Loss 1.529701590538025 Epoch 2, Loss 1.7100629806518555 Epoch 2, Loss 1.3226559162139893 Epoch 2, Loss 1.8098974227905273 Epoch 2, Loss 1.7791922092437744 Epoch 2, Loss 1.6193798780441284 Epoch 2, Loss 1.859694242477417 Epoch 2, Loss 1.5189138650894165 Epoch 2, Loss 1.415958046913147 Epoch 2, Loss 1.212141752243042 Epoch 2, Loss 1.6975561380386353 Epoch 2, Loss 1.7593353986740112 Epoch 2, Loss 1.1995075941085815 Epoch 2, Loss 1.359512448310852 Epoch 2, Loss 1.4644752740859985 Epoch 2, Loss 1.4567301273345947 Epoch 2, Loss 1.4640811681747437 Epoch 2, Loss 1.5118407011032104 Epoch 2, Loss 1.3671762943267822 Epoch 2, Loss 1.4093780517578125 Epoch 2, Loss 1.6929950714111328 Epoch 2, Loss 1.421968698501587 Epoch 2, Loss 1.3280011415481567 Epoch 2, Loss 1.5840849876403809 Epoch 2, Loss 1.3747957944869995 Epoch 2, Loss 1.6173515319824219 Epoch 2, Loss 1.3797783851623535 Epoch 2, Loss 1.245814323425293 Epoch 2, Loss 1.311650276184082 Epoch 2, Loss 1.570831298828125 Epoch 2, Loss 1.7656368017196655 Epoch 2, Loss 1.4017724990844727 Epoch 2, Loss 1.1819841861724854 Epoch 2, Loss 1.2329351902008057 Epoch 2, Loss 1.3429627418518066 Epoch 2, Loss 1.5433602333068848 Epoch 2, Loss 1.2263259887695312 Epoch 2, Loss 1.44208562374115 Epoch 2, Loss 1.5704418420791626 Epoch 2, Loss 1.8433754444122314 Epoch 2, Loss 1.3556145429611206 Epoch 2, Loss 1.8337855339050293 Epoch 2, Loss 1.3890026807785034 Epoch 2, Loss 1.2915153503417969 Epoch 2, Loss 1.2885075807571411 Epoch 2, Loss 1.626181960105896 Epoch 2, Loss 1.3702009916305542 Epoch 2, Loss 1.5307343006134033 Epoch 2, Loss 1.5089809894561768 Epoch 2, Loss 1.5458707809448242 Epoch 2, Loss 1.6739248037338257 Epoch 2, Loss 1.6757007837295532 Epoch 2, Loss 1.6528023481369019 Epoch 2, Loss 2.0662283897399902 Epoch 2, Loss 1.6763783693313599 Epoch 2, Loss 1.511576771736145 Epoch 2, Loss 1.5105756521224976 Epoch 2, Loss 1.6672422885894775 Epoch 2, Loss 1.3297759294509888 Epoch 2, Loss 1.3444056510925293 Epoch 2, Loss 1.8276199102401733 Epoch 2, Loss 1.6177341938018799 Epoch 2, Loss 1.3591456413269043 Epoch 2, Loss 1.3552546501159668 Epoch 2, Loss 1.700721025466919 Epoch 2, Loss 1.5025629997253418 Epoch 2, Loss 1.7380791902542114 Epoch 2, Loss 1.4552404880523682 Epoch 2, Loss 1.4073638916015625 Epoch 2, Loss 1.685255765914917 Epoch 2, Loss 1.2512426376342773 Epoch 2, Loss 1.4989361763000488 Epoch 2, Loss 1.4337191581726074 Epoch 2, Loss 1.9238563776016235 Epoch 2, Loss 1.5253225564956665 Epoch 2, Loss 1.4192780256271362 Epoch 2, Loss 1.3466325998306274 Epoch 2, Loss 1.2324621677398682 Epoch 2, Loss 1.3456989526748657 Epoch 2, Loss 1.5006344318389893 Epoch 2, Loss 1.592153787612915 Epoch 2, Loss 1.3227531909942627 Epoch 2, Loss 1.3968530893325806 Epoch 2, Loss 1.2369649410247803 Epoch 2, Loss 1.4970403909683228 Epoch 2, Loss 1.4391765594482422 Epoch 2, Loss 1.6369444131851196 Epoch 2, Loss 1.414367914199829 Epoch 2, Loss 1.7419261932373047 Epoch 2, Loss 1.4557058811187744 Epoch 2, Loss 1.2599941492080688 Epoch 2, Loss 1.731783390045166 Epoch 2, Loss 1.608886957168579 Epoch 2, Loss 1.2529417276382446 Epoch 2, Loss 1.3802416324615479 Epoch 2, Loss 1.4927818775177002 Epoch 2, Loss 1.5472095012664795 Epoch 2, Loss 1.5669280290603638 Epoch 2, Loss 1.5150359869003296 Epoch 2, Loss 1.6746834516525269 Epoch 2, Loss 1.0480552911758423 Epoch 2, Loss 1.5535739660263062 Epoch 2, Loss 1.5265779495239258 Epoch 2, Loss 1.3840503692626953 Epoch 2, Loss 1.7055798768997192 Epoch 2, Loss 1.5464352369308472 Epoch 2, Loss 1.174098014831543 Epoch 2, Loss 1.6471370458602905 Epoch 2, Loss 1.2784475088119507 Epoch 2, Loss 1.055302381515503 Epoch 2, Loss 1.3225092887878418 Epoch 2, Loss 1.291968584060669 Epoch 2, Loss 1.1358336210250854 Epoch 2, Loss 1.5210617780685425 Epoch 2, Loss 1.2005878686904907 Epoch 2, Loss 1.7784743309020996 Epoch 2, Loss 1.112040400505066 Epoch 2, Loss 1.4387006759643555 Epoch 2, Loss 1.2630209922790527 Epoch 2, Loss 1.3373013734817505 Epoch 2, Loss 1.2956228256225586 Epoch 2, Loss 1.4301007986068726 Epoch 2, Loss 1.5055773258209229 Epoch 2, Loss 1.3266152143478394 Epoch 2, Loss 1.4556552171707153 Epoch 2, Loss 1.2938069105148315 Epoch 3, Loss 1.2657749652862549 Epoch 3, Loss 1.3685088157653809 Epoch 3, Loss 1.3917596340179443 Epoch 3, Loss 1.454487681388855 Epoch 3, Loss 1.2210859060287476 Epoch 3, Loss 1.181883692741394 Epoch 3, Loss 1.4901630878448486 Epoch 3, Loss 1.639451026916504 Epoch 3, Loss 1.2693920135498047 Epoch 3, Loss 1.4349827766418457 Epoch 3, Loss 1.2711045742034912 Epoch 3, Loss 1.339880347251892 Epoch 3, Loss 1.418124794960022 Epoch 3, Loss 1.4467421770095825 Epoch 3, Loss 1.444687843322754 Epoch 3, Loss 1.1931383609771729 Epoch 3, Loss 1.4755314588546753 Epoch 3, Loss 1.1279876232147217 Epoch 3, Loss 1.3665730953216553 Epoch 3, Loss 1.8242483139038086 Epoch 3, Loss 1.568402647972107 Epoch 3, Loss 1.4150508642196655 Epoch 3, Loss 1.6502350568771362 Epoch 3, Loss 1.5290955305099487 Epoch 3, Loss 1.2656736373901367 Epoch 3, Loss 1.5326241254806519 Epoch 3, Loss 1.5800015926361084 Epoch 3, Loss 1.3273322582244873 Epoch 3, Loss 1.6606097221374512 Epoch 3, Loss 1.1275347471237183 Epoch 3, Loss 1.5929442644119263 Epoch 3, Loss 1.332479476928711 Epoch 3, Loss 1.6427674293518066 Epoch 3, Loss 1.2133643627166748 Epoch 3, Loss 1.4062793254852295 Epoch 3, Loss 1.4059674739837646 Epoch 3, Loss 1.4475295543670654 Epoch 3, Loss 1.4280588626861572 Epoch 3, Loss 1.7738473415374756 Epoch 3, Loss 1.3956644535064697 Epoch 3, Loss 1.5311213731765747 Epoch 3, Loss 0.9934478998184204 Epoch 3, Loss 1.545434832572937 Epoch 3, Loss 1.4548133611679077 Epoch 3, Loss 1.0867449045181274 Epoch 3, Loss 1.391006588935852 Epoch 3, Loss 1.4315217733383179 Epoch 3, Loss 1.6717965602874756 Epoch 3, Loss 1.5112428665161133 Epoch 3, Loss 1.488818883895874 Epoch 3, Loss 1.6172558069229126 Epoch 3, Loss 1.2331808805465698 Epoch 3, Loss 1.4733998775482178 Epoch 3, Loss 1.3625138998031616 Epoch 3, Loss 1.4386574029922485 Epoch 3, Loss 1.3568108081817627 Epoch 3, Loss 1.258704423904419 Epoch 3, Loss 1.6578422784805298 Epoch 3, Loss 1.4115132093429565 Epoch 3, Loss 1.2691428661346436 Epoch 3, Loss 1.4916046857833862 Epoch 3, Loss 1.530895709991455 Epoch 3, Loss 1.6672450304031372 Epoch 3, Loss 1.6978107690811157 Epoch 3, Loss 1.5214213132858276 Epoch 3, Loss 1.4066779613494873 Epoch 3, Loss 1.7450149059295654 Epoch 3, Loss 1.5878835916519165 Epoch 3, Loss 1.5820975303649902 Epoch 3, Loss 1.3010077476501465 Epoch 3, Loss 1.6103583574295044 Epoch 3, Loss 1.2728753089904785 Epoch 3, Loss 1.5998402833938599 Epoch 3, Loss 1.3423200845718384 Epoch 3, Loss 1.3012176752090454 Epoch 3, Loss 1.3549573421478271 Epoch 3, Loss 1.2880171537399292 Epoch 3, Loss 1.4422558546066284 Epoch 3, Loss 1.3892611265182495 Epoch 3, Loss 1.8734943866729736 Epoch 3, Loss 1.5323463678359985 Epoch 3, Loss 1.2365837097167969 Epoch 3, Loss 1.3567500114440918 Epoch 3, Loss 1.1825237274169922 Epoch 3, Loss 1.4575679302215576 Epoch 3, Loss 1.44956636428833 Epoch 3, Loss 1.3784416913986206 Epoch 3, Loss 1.6067789793014526 Epoch 3, Loss 1.191642165184021 Epoch 3, Loss 1.6875654458999634 Epoch 3, Loss 1.5299079418182373 Epoch 3, Loss 1.601672887802124 Epoch 3, Loss 1.446716070175171 Epoch 3, Loss 1.482204556465149 Epoch 3, Loss 1.5481945276260376 Epoch 3, Loss 1.641560435295105 Epoch 3, Loss 1.1678754091262817 Epoch 3, Loss 1.2199982404708862 Epoch 3, Loss 1.5881229639053345 Epoch 3, Loss 1.4570183753967285 Epoch 3, Loss 1.6045030355453491 Epoch 3, Loss 1.8124254941940308 Epoch 3, Loss 1.1126610040664673 Epoch 3, Loss 1.514694333076477 Epoch 3, Loss 1.3265814781188965 Epoch 3, Loss 1.3347218036651611 Epoch 3, Loss 1.184769868850708 Epoch 3, Loss 1.6264007091522217 Epoch 3, Loss 1.6782984733581543 Epoch 3, Loss 1.3247326612472534 Epoch 3, Loss 1.570529818534851 Epoch 3, Loss 1.5758389234542847 Epoch 3, Loss 1.3637256622314453 Epoch 3, Loss 1.2797119617462158 Epoch 3, Loss 1.4374923706054688 Epoch 3, Loss 1.4566384553909302 Epoch 3, Loss 1.2352689504623413 Epoch 3, Loss 1.6088505983352661 Epoch 3, Loss 1.5399131774902344 Epoch 3, Loss 1.5017908811569214 Epoch 3, Loss 1.657196044921875 Epoch 3, Loss 1.3789411783218384 Epoch 3, Loss 1.2777636051177979 Epoch 3, Loss 1.6071970462799072 Epoch 3, Loss 1.6217520236968994 Epoch 3, Loss 1.2750431299209595 Epoch 3, Loss 1.499721646308899 Epoch 3, Loss 1.741183876991272 Epoch 3, Loss 1.2842175960540771 Epoch 3, Loss 2.0048739910125732 Epoch 3, Loss 1.4397671222686768 Epoch 3, Loss 1.41280996799469 Epoch 3, Loss 1.327250361442566 Epoch 3, Loss 1.3460841178894043 Epoch 3, Loss 1.3374409675598145 Epoch 3, Loss 1.3694055080413818 Epoch 3, Loss 1.6188303232192993 Epoch 3, Loss 1.5583730936050415 Epoch 3, Loss 1.1917520761489868 Epoch 3, Loss 1.3353607654571533 Epoch 3, Loss 1.2896196842193604 Epoch 3, Loss 1.3106706142425537 Epoch 3, Loss 1.3984615802764893 Epoch 3, Loss 1.4131144285202026 Epoch 3, Loss 1.7911815643310547 Epoch 3, Loss 1.4342396259307861 Epoch 3, Loss 1.2494813203811646 Epoch 3, Loss 1.3417868614196777 Epoch 3, Loss 1.1329594850540161 Epoch 3, Loss 1.3146885633468628 Epoch 3, Loss 1.1411229372024536 Epoch 3, Loss 1.4046076536178589 Epoch 3, Loss 1.422649621963501 Epoch 3, Loss 1.3979917764663696 Epoch 3, Loss 1.4007906913757324 Epoch 3, Loss 1.742323398590088 Epoch 3, Loss 1.334319829940796 Epoch 3, Loss 1.505510926246643 Epoch 3, Loss 1.5146727561950684 Epoch 3, Loss 1.3049325942993164 Epoch 3, Loss 1.5551166534423828 Epoch 3, Loss 1.5730377435684204 Epoch 3, Loss 1.4128203392028809 Epoch 3, Loss 1.3167755603790283 Epoch 3, Loss 1.518812656402588 Epoch 3, Loss 1.5243498086929321 Epoch 3, Loss 1.3108272552490234 Epoch 3, Loss 1.486115574836731 Epoch 3, Loss 1.165726900100708 Epoch 3, Loss 1.255001425743103 Epoch 3, Loss 1.2435463666915894 Epoch 3, Loss 1.4704406261444092 Epoch 3, Loss 1.3664522171020508 Epoch 3, Loss 1.4193373918533325 Epoch 3, Loss 1.3270068168640137 Epoch 3, Loss 1.2870937585830688 Epoch 3, Loss 1.6283689737319946 Epoch 3, Loss 1.6018389463424683 Epoch 3, Loss 1.1878634691238403 Epoch 3, Loss 1.181381344795227 Epoch 3, Loss 1.3414957523345947 Epoch 3, Loss 1.5913832187652588 Epoch 3, Loss 1.2617591619491577 Epoch 3, Loss 1.276902198791504 Epoch 3, Loss 1.2591112852096558 Epoch 3, Loss 1.5003361701965332 Epoch 3, Loss 1.6098048686981201 Epoch 3, Loss 1.3043162822723389 Epoch 3, Loss 1.4671623706817627 Epoch 3, Loss 1.2743574380874634 Epoch 3, Loss 1.333449363708496 Epoch 3, Loss 1.0447195768356323 Epoch 3, Loss 1.7496633529663086 Epoch 3, Loss 1.4349948167800903 Epoch 3, Loss 0.9941039681434631 Epoch 3, Loss 1.1381226778030396 Epoch 3, Loss 1.1700595617294312 Epoch 3, Loss 1.3808567523956299 Epoch 3, Loss 1.4743382930755615 Epoch 3, Loss 1.5828357934951782 Epoch 3, Loss 1.3578652143478394 Epoch 3, Loss 1.253328561782837 Epoch 3, Loss 1.6470190286636353 Epoch 3, Loss 1.3152893781661987 Epoch 3, Loss 1.3049588203430176 Epoch 3, Loss 1.75481116771698 Epoch 3, Loss 1.226052165031433 Epoch 3, Loss 1.434431552886963 Epoch 3, Loss 1.576608419418335 Epoch 3, Loss 1.5275124311447144 Epoch 3, Loss 1.2385188341140747 Epoch 3, Loss 1.1679117679595947 Epoch 3, Loss 1.4889219999313354 Epoch 3, Loss 1.3882681131362915 Epoch 3, Loss 1.471296787261963 Epoch 3, Loss 1.022072196006775 Epoch 3, Loss 1.1666314601898193 Epoch 3, Loss 1.365638017654419 Epoch 3, Loss 1.4819036722183228 Epoch 3, Loss 1.7000688314437866 Epoch 3, Loss 1.6323959827423096 Epoch 3, Loss 1.3997470140457153 Epoch 3, Loss 1.5760842561721802 Epoch 3, Loss 1.2480628490447998 Epoch 3, Loss 1.4412319660186768 Epoch 3, Loss 1.1057498455047607 Epoch 3, Loss 1.4089657068252563 Epoch 3, Loss 1.2607370615005493 Epoch 3, Loss 1.3391801118850708 Epoch 3, Loss 1.1781189441680908 Epoch 3, Loss 1.7425432205200195 Epoch 3, Loss 1.4165338277816772 Epoch 3, Loss 1.8061004877090454 Epoch 3, Loss 1.6210708618164062 Epoch 3, Loss 1.6151728630065918 Epoch 3, Loss 1.3837578296661377 Epoch 3, Loss 1.4376273155212402 Epoch 3, Loss 1.4341416358947754 Epoch 3, Loss 1.6254396438598633 Epoch 3, Loss 1.1672800779342651 Epoch 3, Loss 1.523203730583191 Epoch 3, Loss 1.3754456043243408 Epoch 3, Loss 1.3214695453643799 Epoch 3, Loss 0.9381955862045288 Epoch 3, Loss 1.6798808574676514 Epoch 3, Loss 1.4536024332046509 Epoch 3, Loss 1.3441954851150513 Epoch 3, Loss 1.3261338472366333 Epoch 3, Loss 1.459885597229004 Epoch 3, Loss 1.2846229076385498 Epoch 3, Loss 1.5398207902908325 Epoch 3, Loss 0.9090222120285034 Epoch 3, Loss 1.3650181293487549 Epoch 3, Loss 1.2454298734664917 Epoch 3, Loss 1.3336719274520874 Epoch 3, Loss 1.4035537242889404 Epoch 3, Loss 0.9969670176506042 Epoch 3, Loss 1.3733644485473633 Epoch 3, Loss 1.6806672811508179 Epoch 3, Loss 1.1753177642822266 Epoch 3, Loss 1.397196888923645 Epoch 3, Loss 1.438379168510437 Epoch 3, Loss 1.463959813117981 Epoch 3, Loss 1.4594169855117798 Epoch 3, Loss 1.2245839834213257 Epoch 3, Loss 1.248319387435913 Epoch 3, Loss 1.325327754020691 Epoch 3, Loss 1.6232614517211914 Epoch 3, Loss 1.192349910736084 Epoch 3, Loss 1.3080886602401733 Epoch 3, Loss 1.5868333578109741 Epoch 3, Loss 1.5101203918457031 Epoch 3, Loss 1.6002157926559448 Epoch 3, Loss 1.4421924352645874 Epoch 3, Loss 1.438562273979187 Epoch 3, Loss 1.22853422164917 Epoch 3, Loss 1.102024793624878 Epoch 3, Loss 1.0905317068099976 Epoch 3, Loss 1.378516435623169 Epoch 3, Loss 1.1065865755081177 Epoch 3, Loss 1.2351804971694946 Epoch 3, Loss 1.1582094430923462 Epoch 3, Loss 1.4239323139190674 Epoch 3, Loss 1.0838066339492798 Epoch 3, Loss 1.4736006259918213 Epoch 3, Loss 1.2326642274856567 Epoch 3, Loss 1.7137911319732666 Epoch 3, Loss 1.691973328590393 Epoch 3, Loss 1.3055859804153442 Epoch 3, Loss 1.0706970691680908 Epoch 3, Loss 1.3448677062988281 Epoch 3, Loss 1.5532619953155518 Epoch 3, Loss 1.263440489768982 Epoch 3, Loss 1.306041955947876 Epoch 3, Loss 1.678679347038269 Epoch 3, Loss 1.1568427085876465 Epoch 3, Loss 1.1706748008728027 Epoch 3, Loss 1.1872162818908691 Epoch 3, Loss 1.2646400928497314 Epoch 3, Loss 0.9924498200416565 Epoch 3, Loss 1.5050513744354248 Epoch 3, Loss 1.4457910060882568 Epoch 3, Loss 1.3851691484451294 Epoch 3, Loss 1.4667108058929443 Epoch 3, Loss 1.6174603700637817 Epoch 3, Loss 1.507022738456726 Epoch 3, Loss 1.4685307741165161 Epoch 3, Loss 0.9865709543228149 Epoch 3, Loss 1.5189127922058105 Epoch 3, Loss 1.8143751621246338 Epoch 3, Loss 1.5179133415222168 Epoch 3, Loss 1.0695254802703857 Epoch 3, Loss 1.039542555809021