{ "cells": [ { "cell_type": "code", "id": "initial_id", "metadata": { "collapsed": true, "ExecuteTime": { "end_time": "2025-06-25T06:29:17.879978Z", "start_time": "2025-06-25T06:29:16.365981Z" } }, "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "y = torch.randn(2)\n", "print(y)\n", "\n", "m = nn.Softmax(dim=0)\n", "out = m(y)\n", "print(out)" ], "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([-0.9296, -0.1961])\n", "tensor([0.3244, 0.6756])\n" ] } ], "execution_count": 1 }, { "metadata": { "ExecuteTime": { "end_time": "2025-06-25T06:31:29.348989Z", "start_time": "2025-06-25T06:31:29.328174Z" } }, "cell_type": "code", "source": [ "x = torch.randint(0, 255, (1, 128 * 128), dtype=torch.float32)\n", "fc = nn.Linear(128 * 128, 2)\n", "y = fc(x)\n", "print(y)" ], "id": "7a0673da7cb52123", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[59.5330, 43.6760]], grad_fn=)\n" ] } ], "execution_count": 2 }, { "metadata": { "ExecuteTime": { "end_time": "2025-06-25T06:31:56.045399Z", "start_time": "2025-06-25T06:31:56.041215Z" } }, "cell_type": "code", "source": [ "output = nn.Softmax(dim=1)(y)\n", "print(output)" ], "id": "a7135e5b93ea1669", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[1.0000e+00, 1.2984e-07]], grad_fn=)\n" ] } ], "execution_count": 3 } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }