feat: add Jupyter notebook for TensorBoard integration and logging example
This commit is contained in:
126
15.ipynb
Normal file
126
15.ipynb
Normal file
@ -0,0 +1,126 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"source": "!pip install tensorboard",
|
||||
"id": "add52c783768e27a",
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-06-20T09:23:44.953818Z",
|
||||
"start_time": "2025-06-20T09:23:44.941696Z"
|
||||
}
|
||||
},
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"%load_ext tensorboard\n",
|
||||
"%tensorboard --logdir runs --host 0.0.0.0 --port 6006"
|
||||
],
|
||||
"id": "6d148c29e2c0fbbe",
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The tensorboard extension is already loaded. To reload it, use:\n",
|
||||
" %reload_ext tensorboard\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Reusing TensorBoard on port 6006 (pid 414), started 0:24:42 ago. (Use '!kill 414' to kill it.)"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<IPython.core.display.HTML object>"
|
||||
],
|
||||
"text/html": [
|
||||
"\n",
|
||||
" <iframe id=\"tensorboard-frame-42c02cf9641fd4a7\" width=\"100%\" height=\"800\" frameborder=\"0\">\n",
|
||||
" </iframe>\n",
|
||||
" <script>\n",
|
||||
" (function() {\n",
|
||||
" const frame = document.getElementById(\"tensorboard-frame-42c02cf9641fd4a7\");\n",
|
||||
" const url = new URL(\"/\", window.location);\n",
|
||||
" const port = 6006;\n",
|
||||
" if (port) {\n",
|
||||
" url.port = port;\n",
|
||||
" }\n",
|
||||
" frame.src = url;\n",
|
||||
" })();\n",
|
||||
" </script>\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"execution_count": 12
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"id": "initial_id",
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-06-20T09:23:36.713794Z",
|
||||
"start_time": "2025-06-20T09:23:32.977971Z"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"from torch.utils.tensorboard import SummaryWriter\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# 创建一个SummaryWriter对象\n",
|
||||
"writer = SummaryWriter()\n",
|
||||
"\n",
|
||||
"for n_iter in range(100):\n",
|
||||
" writer.add_scalar('Loss/train', np.random.random(), n_iter)\n",
|
||||
" writer.add_scalar('Loss/test', np.random.random(), n_iter)\n",
|
||||
" writer.add_scalar('Accuracy/train', np.random.random(), n_iter)\n",
|
||||
" writer.add_scalar('Accuracy/test', np.random.random(), n_iter)\n",
|
||||
"\n",
|
||||
"img = np.zeros((3, 100, 100))\n",
|
||||
"img[0] = np.arange(0, 10000).reshape(100, 100) / 10000\n",
|
||||
"img[1] = np.arange(0, 10000).reshape(100, 100) / 10000\n",
|
||||
"\n",
|
||||
"writer.add_image('my_image', img, 0)\n",
|
||||
"writer.close()"
|
||||
],
|
||||
"outputs": [],
|
||||
"execution_count": 11
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user