From 30607ae7c1953fad23a15e3f5ef78e5043c390b5 Mon Sep 17 00:00:00 2001 From: fada Date: Tue, 17 Jun 2025 20:55:32 +0800 Subject: [PATCH] feat: refactor Jupyter notebook for convolution layer demonstration with updated input tensor and fixed kernel parameters --- 10.ipynb | 119 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 119 insertions(+) create mode 100644 10.ipynb diff --git a/10.ipynb b/10.ipynb new file mode 100644 index 0000000..2bbc483 --- /dev/null +++ b/10.ipynb @@ -0,0 +1,119 @@ +{ + "cells": [ + { + "cell_type": "code", + "id": "initial_id", + "metadata": { + "collapsed": true, + "ExecuteTime": { + "end_time": "2025-06-17T02:29:56.329629Z", + "start_time": "2025-06-17T02:29:53.851211Z" + } + }, + "source": [ + "import torch\n", + "import torch.nn as nn" + ], + "outputs": [], + "execution_count": 1 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-17T02:30:23.709542Z", + "start_time": "2025-06-17T02:30:23.705090Z" + } + }, + "cell_type": "code", + "source": [ + "x = torch.randn(3, 5, 5).unsqueeze(0)\n", + "print(x.shape)" + ], + "id": "19a429395361b901", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 3, 5, 5])\n" + ] + } + ], + "execution_count": 3 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-17T02:32:50.342968Z", + "start_time": "2025-06-17T02:32:50.335771Z" + } + }, + "cell_type": "code", + "source": [ + "# 请注意DW中,输入特征通道数与输出通道数是一样的\n", + "in_channels_dw = x.shape[1]\n", + "out_channels_dw = x.shape[1]\n", + "# 一般来讲DW卷积的kernel size 为3\n", + "kernel_size_dw = 3\n", + "stride_dw = 1\n", + "\n", + "# DW 卷积groups参数与输入通道数一样\n", + "dw = nn.Conv2d(in_channels_dw, out_channels_dw, kernel_size_dw, stride=stride_dw, groups=in_channels_dw)" + ], + "id": "23ca0000610f16a0", + "outputs": [], + "execution_count": 4 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-17T02:34:22.427522Z", + "start_time": "2025-06-17T02:34:22.369462Z" + } + }, + "cell_type": "code", + "source": [ + "in_channels_pw = out_channels_dw\n", + "out_channels_pw = 4\n", + "kernel_size_pw = 1\n", + "\n", + "pw = nn.Conv2d(in_channels_pw, out_channels_pw, kernel_size_pw, stride=1)\n", + "\n", + "out = pw(dw(x))\n", + "print(out.shape)" + ], + "id": "d0bb1304d1f98d2e", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 4, 3, 3])\n" + ] + } + ], + "execution_count": 5 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}